1.cho bt:A=\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
a) Rút gọn A
b)Tìm x để A>0,A<0
c)Tìm X để /A/=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x>0;x\ne1\)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(A>-1\) \(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}>-1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}+1>0\) \(\Leftrightarrow\)\(\frac{2\sqrt{x}-1}{\sqrt{x}}>0\)
Do \(\sqrt{x}>0\) \(\Rightarrow\)\(2\sqrt{x}-1>0\)\(\Leftrightarrow\)\(2\sqrt{x}>1\)\(\Leftrightarrow\)\(\sqrt{x}>\frac{1}{2}\)\(\Leftrightarrow\)\(x>\frac{1}{4}\)
Vậy \(x>\frac{1}{4}\)\(\left(x\ne1\right)\)thì A > - 1
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
Ta có: \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2-2\sqrt{x}+1}\)
\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(A>-1\)thì \(\frac{\sqrt{x}-1}{\sqrt{x}}>-1\)\(\Leftrightarrow\sqrt{x}-1>-\sqrt{x}\)\(\Leftrightarrow2\sqrt{x}>1\)
\(\Leftrightarrow\sqrt{x}>\frac{1}{2}\)\(\Leftrightarrow x>\frac{1}{4}\)thoả mãn \(x\ne1\)
Vậy \(A>-1\)\(\Leftrightarrow x>\frac{1}{4}\)thoả mãn \(x\ne1\)
Trả lời:
a, \(A=\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)\left(ĐKXĐ:x\ne-2;x\ne-3;x\ne1\right)\)
\(=\left(\frac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{\left(3-x\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+2\right)\left(x+3\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2-\left(9-x^2\right)+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{4-x^2-9+x^2+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{\left(-x-3\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)\left(-1\right)}=\frac{-\left(x+3\right)\left(x+1\right)}{-\left(x+2\right)\left(x+3\right)}=\frac{x+1}{x+2}\)
b, A > 0
\(\frac{x+1}{x+2}>0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x< -2\end{cases}}\)
Vậy để A > 0 thì x > - 1 với x khác 1
hoặc x < - 2 với x khác - 3
ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne-2\\x\ne1\end{cases}}\);
Ta có \(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}\)
\(=\frac{-x-3}{\left(x+3\right)\left(x+2\right)}=-\frac{1}{x+2}\)
Khi đó \(\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)=-\frac{1}{x+2}:-\frac{1}{x-1}=\frac{x-1}{x+2}\)
Khi A = 0 => x - 1 = 0 => x = 1 (loại)
Khi A > 0 => \(\frac{x-1}{x+2}>0\)
TH1 : \(\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow x>1\)
TH2 \(\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Rightarrow x< -2\)
Vậy với x > 1 hoặc x < - 2 ; x \(\ne\)-3 thì A > 0
a) ĐK: \(x\ne-3;x\ne-2;x\ne1\)
\(A=\left(\frac{2-x}{x+3}+\frac{x-3}{x+2}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2+x^2-9+2-x}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)=\frac{-1}{x+2}.\left(1-x\right)=\frac{x-1}{x+2}\)
b) A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}=0\)
Do x khác -2 nên x - 1 = 0 hay x = 1 (loại vì ko thỏa ĐK)
A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}>0\)Xét 2 TH:
- TH1: x - 1 > 0 và x + 2 > 0 suy ra x > 1 và x > -2 nên ta chọn x > 1.
- TH1: x - 1 < 0 và x + 2 < 0 suy ra x < 1 và x < -2 nên ta chọn x < -2. Và x khác -3
Vậy để A > 0 thì x > 1 hoặc x < -2 \(\left(x\ne-3\right)\)
bài này dễ mà mk gợi ý rồi cậu tự làm ha . tách mẫu x^2 + 5x + 6 sau đó đặt nhân tử chung rồi tính con ve sau thì quy đồng lên rồi tính . mk goi y thế chắc cậu ko hiểu lắm đúng ko nhưg hiện h mk bạn làm chưa có ai thèm giải hộ mk có cậu làm đc phần đó thì giải hộ mk đi . Làm ơn !
ĐK : \(x\ne2\); \(x\ne-2\)
a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)
b) - Để A > 0 thì x - 1 > 0 => x > 1
- Để A < 0 thì x - 1 < 0 => x < 1
c) Để | A | = 5 thì | x-1 | = 5
+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình
x - 1 = 5 => x = 6 ( thỏa mãn )
+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình :
-x + 1 = 5 < = > -x = 4 <=> x = -4 ( thỏa mãn )
Vậy tập nghiệm của phương trình là S = { -4 ; 6 }