K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)

21 tháng 4 2015

Bài 1. câu 3

Kẻ đường kính MK của (O), cắt CD tại I => góc MAK = 900 (góc nội tiếp chắn nửa (O))

Tam giác AHM vuông tại H có đường cao HD => MH2 = MA.MD

tương tự MH2 = MB.MC => MA.MD = MB.MC => MD/MB = MC/MA và góc AMB chung => tam giác MCD đồng dạng tam giác MAB 

=> góc MDC = góc MBA mà góc MBA = góc MKA (cùng chắn cung MA) => góc MDC = góc MKA hay gócMDI = góc MKA

tam giác MDI và tam giác MKA có góc M chung và góc MDI = góc MKA (cmt) nên đồng dạng => góc MIA = MAK = 900

=> MK vuông góc CD hay MO vuông góc CD

Bài 2. câu 3 : Tỉ số \(\frac{DE}{BC}=\frac{1}{\sqrt{2}}\)

4 tháng 4 2018

chỉ tôi câu 2 bài 1 vs

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

22 tháng 3 2021

sao chụy là cô giáo mà chụy hỏi nhiều zậy

22 tháng 3 2021

Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)

18 tháng 5 2021

a) tứ giácAPHN có góc P+góc N =180 độnên nội tiếp đc

vìABDC là HBH nên HC  song song BD,lại có CH vuông góc ABnên :góc ABD =90độ

chứng minh tương tự ta cũng có góc ACD=90 Độ

=> góc ABD+ góc ACD=180độ => tứ giác ABCD nôi tiếp đường tròn đường AD

b)Xét 2 tam giác ABE và ACH có :

 ABE=ACH ( cùng phụ với BAC )  (1)

BAE phụ với BDA;BDA=BCA  (góc nt cùng chắn CUNG AB )

CAH phụ với BCA(2)

Từ (1) và (2) suy ra 2 tam giác ABE, ACH đồng dạng 

=>\(\dfrac{AB}{AE}=\dfrac{AC}{AH}=>AB\cdot AH=AE\cdot AC\)

C)

Gọi I là trung điểm BC  => I cố định (Do B và C cố định)

 Gọi O là trung điểm AD => O cố định ( Do BAC không đổi, B và C cố định, O là tâm đường tròn ngoại tiếp tam giác ABC )

=>độ dài OI không đổi

ABDC là hình bình hành => I là trung điểm HD

=>OI=\(\dfrac{1}{2}\)AH ( OI là đường trung bình tam giác ADH)

=>độ dài AH không đổi    

Vì AH là đường kính đường tròn ngoại tiếp tứ giác APHN, độ dài AH không đổi => độ dài bán kính đường tròn ngoại tiếp tứ giác APHN không đổi => đường tròn ngoại tiếp tứ giác APHN có diện tích không đổi