Cho x,y,z là na số nguyên dương nguyên tố cùng nhau và thỏa mãn: \(\left(x-z\right)\left(y-z\right)=z^2\) .CMR: xyz là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}=xyz\left(\frac{1}{yz\left(1+x^2\right)}+\frac{18}{xz\left(1+y^2\right)}+\frac{4}{xy\left(1+z^2\right)}\right)\)
\(=xyz\left(\frac{1}{yz+x\left(x+y+z\right)}+\frac{18}{xz+y\left(x+y+z\right)}+\frac{4}{xy+z\left(x+y+z\right)}\right)\)
\(=xyz\left(\frac{1}{\left(x+y\right).\left(x+z\right)}+\frac{18}{\left(y+x\right).\left(y+z\right)}+\frac{4}{\left(z+x\right).\left(z+y\right)}\right)\)
\(=xyz.\frac{\left(z+y\right)+18.\left(x+z\right)+4\left(x+y\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)
\(=\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)(đpcm)
\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)
\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)
\(=x+\sqrt{xyz}\)
Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)
\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương