tìm x biết 1/1.4+1/4.7+...+1/(3x-2).(3x+1)=670/2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{\left(3x-2\right).\left(3x+1\right)}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(3x-2\right)\left(3x+1\right)}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{\left(3x-2\right)}-\frac{1}{\left(3x+1\right)}\)
\(3A=1-\frac{1}{3x+1}\)
\(A=\left(1-\frac{1}{3x+1}\right).\frac{1}{3}\)
bài này tính tổng hứ làm sao tìm dc x
Sai đề : \(\frac{1}{2011.2014}\)
\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)
\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)
Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)
\(B=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)
\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)
\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)
\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)
\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)
Chúc bạn học tốt !!!
bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
\(1-\frac{1}{x+3}=\frac{375}{376}\)
\(\frac{x+2}{x+3}=\frac{375}{376}\)
=> x + 2 = 375
=> x = 375 - 2
=> x = 373
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)
\(3A=1-\frac{1}{x+3}\)
\(A=\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{\left(3x-2\right)\left(3x+1\right)}=\frac{670}{2011}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(3x-2\right)\left(3x+1\right)}\right)=\frac{670}{2011}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{3x-2}-\frac{1}{3x+1}=\frac{670}{2011}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{3x+1}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{3x+1}=1-\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{3x+1}=\frac{1}{2011}\)
=>3x+1=2011
=>3x=2011-1
=>x=2010:3
=>x=670
vậy x=670
Dặt \(A=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{\left(3x-2\right).\left(3x+1\right)}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(3x-2\right)\left(3x+1\right)}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{\left(3x-2\right)}-\frac{1}{\left(3x+1\right)}\)
\(3A=1-\frac{1}{3x+1}\)
\(A=\left(1-\frac{1}{3x+1}\right):3=\frac{670}{2011}\)
\(1-\frac{1}{3x+1}=\frac{670}{2011}.3\)
\(1-\frac{1}{3x+1}=\frac{2010}{2011}\)
\(\frac{1}{3x+1}=1-\frac{2010}{2011}\)suy ra \(\frac{1}{3x+1}=\frac{1}{2011}\)
suy ra 3x+1=2011
3x=2000
x=2000/3