K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{\left(3x-2\right)\left(3x+1\right)}=\frac{670}{2011}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(3x-2\right)\left(3x+1\right)}\right)=\frac{670}{2011}\)

\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{3x-2}-\frac{1}{3x+1}=\frac{670}{2011}:\frac{1}{3}\)

\(\Rightarrow1-\frac{1}{3x+1}=\frac{2010}{2011}\)

\(\Rightarrow\frac{1}{3x+1}=1-\frac{2010}{2011}\)

\(\Rightarrow\frac{1}{3x+1}=\frac{1}{2011}\)

=>3x+1=2011

=>3x=2011-1

=>x=2010:3

=>x=670

vậy x=670

9 tháng 7 2015

Dặt \(A=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{\left(3x-2\right).\left(3x+1\right)}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(3x-2\right)\left(3x+1\right)}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{\left(3x-2\right)}-\frac{1}{\left(3x+1\right)}\)

\(3A=1-\frac{1}{3x+1}\)

\(A=\left(1-\frac{1}{3x+1}\right):3=\frac{670}{2011}\)

\(1-\frac{1}{3x+1}=\frac{670}{2011}.3\)

\(1-\frac{1}{3x+1}=\frac{2010}{2011}\)

\(\frac{1}{3x+1}=1-\frac{2010}{2011}\)suy ra \(\frac{1}{3x+1}=\frac{1}{2011}\)

suy ra 3x+1=2011

3x=2000

x=2000/3

 

9 tháng 7 2015

Đặt \(A=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{\left(3x-2\right).\left(3x+1\right)}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(3x-2\right)\left(3x+1\right)}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{\left(3x-2\right)}-\frac{1}{\left(3x+1\right)}\)

\(3A=1-\frac{1}{3x+1}\)

\(A=\left(1-\frac{1}{3x+1}\right).\frac{1}{3}\)

bài này tính tổng hứ làm sao tìm dc x

8 tháng 4 2017

x=2009

6 tháng 10 2019

Sai đề : \(\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

Chúc bạn học tốt !!!

7 tháng 9 2016

bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được

12 tháng 8 2017

Ta có:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)

\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)

7 tháng 9 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)

\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)

\(1-\frac{1}{x+3}=\frac{375}{376}\)

\(\frac{x+2}{x+3}=\frac{375}{376}\)

=> x + 2 = 375

=> x = 375 - 2

=> x = 373

16 tháng 7 2015

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)

\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\) 

\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\) 

                  \(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)

                   \(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\) 

                              \(\frac{1}{x+3}=1-\frac{2001}{2002}\) 

                               \(\frac{1}{x+3}=\frac{1}{2002}\) 

                                \(\frac{1}{x}=\frac{1}{2002-3}\) 

                                 \(\frac{1}{x}=\frac{1}{1999}\)

Vậy x = 1999

14 tháng 5 2016

đặt VT là A ta có:

\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)

\(3A=1-\frac{1}{x+3}\)

\(A=\left(1-\frac{1}{x+3}\right):3\)

thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{18}{19}\)

\(\frac{1}{x+3}=\frac{1}{19}\)

=>x+3=19

=>x=16

15 tháng 5 2016

có thể giải cụ thể ra được ko