Cho x,y là các số thực dương thỏa mãn x+y=2 và hằng số k \(k\in Z^+.CMR:x^ky^k\left(x^k+y^k\right)\le2\).Hình như dùng quy nạp thì phải
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lalisa Manobal: em ơi, 1 mệnh đề mà có tồn tại 1 cái không đúng thì chắc chắn không đúng. Người ta bắt CMR $x^ky^k(x^k+y^k)\leq 2$ với mọi $x,y$ dương thỏa mãn $x+y=2$ và $k$ nguyên dương mà có 1 TH không đúng thì cả bài đó sai. Em cứ đưa ra TH đó cho thầy là được. Dùng quy nạp chị cũng đố thầy làm ra.
Sách đó chị nhớ là không có bài giải bài này đâu em.
Chihiro vãi cả hu hu, t giải giúp một đứa bạn thôi mà;(( vả lại t bảo là ko chắc nên đừng ném đá nhá!
Gọi k là cặp số thực(x,y) #0 thỏa mãn :
\(\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y=0\), vậy k=...
Hướng suy nghĩ của bạn đúng rồi.
Lời giải:
Phản chứng. Giả sử $y^2< xz$.
$0< y^2< xz$
$0< b^2< ac$
$\Rightarrow b^2y^2< xzac$
Theo đề bài ta có:
$2by=az+cx$
$\Rightarrow (az+cx)^2=4b^2y^2$
$\Leftrightarrow a^2z^2+c^2x^2+2acxz=4b^2y^2$
$a^2z^2+c^2x^2=4b^2y^2-2acxz< 4xzac-2acxz=2acxz$
$\Leftrightarrow (az-cx)^2< 0$ (vô lý)
Do đó điều giả sử là sai.
Tức là $y^2\geq xz$