tinh gia tri cua bieu thuc
a, x^3+12x^2+48X+64 tai x=6
B, x^3-6X^2+12x-8 tai x=22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x3 - 6x2 + 12x + 10
A = (x3 - 6x2 + 12x - 8) + 18
A = (x - 2)3 + 18
tại x = 22, có:
A = (x - 2)3 + 18 = (22 - 2)3 + 18 = 203 + 18 = 8000 + 18 = 8018
Tính giá trị biểu thức sau bằng cách hợp lí :
A = x3 - 6x2 +12x + 10
= x3 - 3.x2.2 + 3.x.22 - 23 + 18
= ( x - 2 )3 + 18
Thay x = 22 , ta có :
A = 203 + 18 = 8018
\(A=x^2+12x+36=\left(x+6\right)^2\)
\(B=x^2+4xy+4y^2=\left(x+2y\right)^2\)
\(C=\left(3x-7\right)^2+10\left(3x-7\right)+25=\left(3x-2\right)^2\)
\(D=8x^3-12x^2+6x-1=\left(2x-1\right)^3\)
Việc còn lại bạn tự thay vào rồi tính thôi :v
\(A=x^2+12x+36\)
\(A=x^2+2.x.6+6^2\)
\(A=\left(x+6\right)^2\)
Thay x = 64 ta được
\(A=\left(64+6\right)^2\)
\(A=70^2\)
\(A=4900\)
\(B=x^2+4xy+4y^2\)
\(B=x^2+2.x.2y+\left(2y\right)^2\)
\(B=\left(x+2y\right)^2\)
Thay x = 2,8 và y = 3,6 ta được
\(B=\left(2,8+2.3,6\right)^2\)
\(B=\left(2,8+7,2\right)^2\)
\(B=10^2\)
\(B=100\)
\(C=\left(3x-7\right)^2+10\left(3x-7\right)+25\)
\(C=\left(3x-7\right)^2+2.\left(3x-7\right).5+5^2\)
\(C=\left(3x-7+5\right)^2\)
\(C=\left(3x-2\right)^2\)
Thay x = 16 ta được
\(C=\left(3.16-2\right)^2\)
\(C=\left(48-2\right)^2\)
\(C=46^2\)
\(C=2116\)
\(D=8x^3-12x^2+6x-1\)
\(D=\left(2x\right)^3-3.\left(2x\right)^2+3.\left(2x\right)-1^3\)
\(D=\left(2x-1\right)^3\)
Thay x = -1/2 ta được
\(D=\left[2.\left(-\dfrac{1}{2}\right)-1\right]^3\)
\(D=\left(-1-1\right)^3\)
\(D=\left(-2\right)^3\)
\(D=-8\)
Bài 4:
a, \(x^3+12x^2+48x+64=x^3+4x^2+8x^2+32x+16x+64\)
\(=x^2.\left(x+4\right)+8x.\left(x+4\right)+16.\left(x+4\right)\)
\(=\left(x+4\right).\left(x^2+8x+16\right)=\left(x+4\right).\left(x^2+4x+4x+16\right)\)
\(=\left(x+4\right).\left(x+4\right)^2=\left(x+4\right)^3\)(1)
Thay \(x=6\) vào (1) ta được:
\(\left(6+4\right)^3=10^3=1000\)
Vậy...........
b, \(x^3-6x^2+12x-8=x^3-2x^2-4x^2+8x+4x-8\)
\(=x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2-4x+4\right)=\left(x-2\right).\left(x^2-2x-2x+4\right)\)
\(=\left(x-2\right).\left(x-2\right)^2=\left(x-2\right)^3\)(2)
Thay \(x=22\) vào (2) ta được:
\(\left(22-2\right)^3=20^3=8000\)
Vậy.............
Chúc bạn học tốt!!!
Bài 2:
a, \(\left(x+9\right)^3=27=3^3\)
\(\Rightarrow x+9=3\Rightarrow x=-6\)
Vậy.........
b, \(8-12x-x^3+6x^2=-64\)
\(\Rightarrow-\left(x^3-6x^2+12x-8\right)=-64\)
\(\Rightarrow x^3-2x^2-4x^2+8x+4x-8=64\)
\(\Rightarrow x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-4x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x^2-2x-2x+4\right)=64\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)^2=64\)
\(\Rightarrow\left(x-2\right)^3=4^3\Rightarrow x-2=4\Rightarrow x=6\)
Vậy............
Chúc bạn học tốt!!!
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
\(M=5.2.\left(-3\right)-10=3.\left(-3\right)\)
\(M=-30-10=-9\)
\(M=-40+9\)
\(M=-31\)
\(N=2\left(x^2-1\right)+3x-2\)
\(N=2.\left(1-1\right)+3.\left(-1\right)-2\)
\(N=-3-2\)
\(N=-5\)
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
Bài làm
a) x3 + 12x2 + 48x + 64 tại x =6
Ta có: x3 + 12x2 + 48x + 64
<=> x3 + 3 . x2 . 4 + 3 . x . 42 + 33
<=> ( x + 3 )3
Thay x = 6 vào ( x + 3 )3 ta được:
( 6 + 3 )3
= 93 = 729
Vậy giá trị của biểu thức là 729 tại x = 6
b) x3 - 6x2 + 12x - 8 tại x = 22
Ta có: x3 - 6x2 + 12x - 8
<=> x3 - 3 . x2 . 2 + 3 . x . 22 - 23
<=> ( x - 2 )3
Thay x = 22 vào ( x - 2 )3 ta được:
( 22 - 2 )3 = 203 = 8000
Vậy giá trị của biểu thức trên là 8000 tại x = 22.
# Học tốt #