Bài 1:
a) 2/3.x+4=-12
b) 3/4+1/4 : x = -3
c) x+1/10 + x+1/11 + x+1/12 = x+1/13 + x+1/14
d) x+4/2017 + x+3/2018 = x+2/2019 + x+1/2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)
⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)
⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)
⇒ \(x+2021=0\)
⇔ \(x=-2021\)
\(Vậy\) \(x=-2021\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)
=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)
=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)
=> \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)
=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)
Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)
Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)
(x+4)/2017 + (x+3)/2018 = (x+2)/2019 + (x+1)/2020
=> (x+4)/2017 + 1 + (x+3)/2018 + 1 = (x + 2)/2019 + 1 + (x + 1)/2020 + 1
=> (x+2021)/2017 + (x + 2021)/2018 = (x+2021)/2019 + (x+2021)/2020
=> (x+2021)(1/2017 + 1/2018) = (x + 2021)(1/2019+1/2020)
mà 1/2017 + 1/2018 khác 1/2019 + 1/2020
=> x + 2021 = 0
=> x = -2021
\(\frac{x+4}{2017}+\frac{x+3}{2018}=\frac{x+2}{2019}+\frac{x+1}{2020}\)
\(\left(\frac{x+4}{2017}+1\right)+\left(\frac{x+3}{2018}+1\right)=\left(\frac{x+2}{2019}+1\right)+\left(\frac{x+1}{2020}+1\right)\)
\(\frac{x+4+2017}{2017}+\frac{x+3+2018}{2018}=\frac{x+2+2019}{2019}+\frac{x+1+2020}{2020}\)
\(\frac{x+2021}{2017}+\frac{x+2021}{2018}=\frac{x+2021}{2019}+\frac{x+2021}{2020}\)
\(\frac{x+2021}{2017}+\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)
\(\left(x-2021\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)
\(\Rightarrow x-2021=0\)
Vậy \(x=2021\)
c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\cdot\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{13}\right)\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
d) \(\frac{x+4}{2017}+\frac{x+3}{2018}=\frac{x+2}{2019}+\frac{x+1}{2020}\)
\(\Leftrightarrow\left(\frac{x+4}{2017}+1\right)+\left(\frac{x+3}{2018}+1\right)=\left(\frac{x+2}{2019}+1\right)+\left(\frac{x+1}{2020}\right)\)
\(\Leftrightarrow\frac{x+2021}{2017}+\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)
\(\Leftrightarrow\left(x+2021\right)\cdot\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
a) 2/3.X+4=-12
2/3.X=-12-4
2/3.X=-16
x=-16:2/3
x=-16.3/2
x=-24
vậy x=-24
B) 3/4+1/4:X=-3
1/4:X=-3-3/4
1/4:X=-15/4
X=1/4:-15/4
X=1/4.4/-15
X=-1/15
VẬY X=-1/15
MÌNH MỚI NGHĨ RA HAI Ý THÔI.
THÔNG CẢM CHO MÌNH BẠN NHÁ