So sánh \(\frac{x-y}{x+y};\frac{x^2-y^2}{x^2+y^2}\) với x>y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-y^2}{x^2+xy+y^2}=\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^2-2xy}\left(1\right)\)
Vì \(x>y>0\) ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)
Do \(x>y>0\Leftrightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+xy+y^2}\)
Thanh Hằng Nguyễn copy bài à
Trong câu hỏi tương tự giải y hệt
Mình nghi lắm.
Với n=0 ta có \(\frac{x}{y}=\frac{x+n}{y+n}\)
Với n khác 0, ta xét 3 trường hợp
Nếu x<y thì \(\frac{x}{y}< \frac{x+n}{y+n}\)
Với x=y thì \(\frac{x}{y}=\frac{x+n}{y+n}\)
Với x>y thì \(\frac{x}{y}>\frac{x+n}{y+n}\)
Có thể thế vào: x=2;y=1.Ta có:
\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)
\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.
\(\frac{x}{y}\)+\(\frac{y}{z}\)+\(\frac{z}{x}\)=\(\frac{x+y+z}{y+z+x}\)=1
nên x=y=z
\(\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}^3+\sqrt{y}^3}\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}^3+\sqrt{y}^3}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\sqrt{x}+\sqrt{y}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y-x+\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}\right)\)
\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{\sqrt{xy}-2y}{\sqrt{x}-\sqrt{y}}\right)\)
tự làm tiếp nh đến đây dễ rồi
Năm 1930 có sự kiện gì và năm 1945 có sự kiện gì toán lóp 4
Ta có : \(\frac{x+y}{x-y}=\frac{\left(x+y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x^2+2xy+y^2}{x^2-y^2}>\frac{x^2+y^2}{x^2-y^2}\)
Nên \(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}\) Hay \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\) (\(\frac{a}{b}>\frac{c}{d}\) thì \(\frac{b}{a}< \frac{d}{c}\) )
Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(Ta\)\(có\)\(:\)\(\frac{x+y}{x-y}=\frac{\left(x+y\right)}{\left(x-y\right)}\frac{\left(x+y\right)}{\left(x+y\right)}=\frac{x^2+2xy+y2}{x^2-y^2}\)\(>\frac{x^2+y^2}{x^2-y^2}\)
\(Nên\)\(:\)\(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}hay\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)\(\left(\frac{a}{b}>\frac{c}{d}thì\frac{b}{a}< \frac{d}{c}\right)\)
\(Vậy\)\(:\)\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)