K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(=-10\)

\(=-6\)

22 tháng 8 2020

a) \(E=\sqrt{\left|12\sqrt{5}-29\right|}-\sqrt{12\sqrt{5}+29}\)

\(\Leftrightarrow E^2=\left|12\sqrt{5}-29\right|-12\sqrt{5}-29\)

\(\Leftrightarrow E^2=29-12\sqrt{5}-12\sqrt{5}-29\)

\(\Leftrightarrow E^2=-24\sqrt{5}\)

\(\Leftrightarrow E=-2\sqrt{6\sqrt{5}}\)

b) Đặt \(F=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)

\(\Leftrightarrow F^2=\left|40\sqrt{2}-57\right|-40\sqrt{2}-57\)

\(\Leftrightarrow F^2=57-40\sqrt{2}-40\sqrt{2}-57\)

\(\Leftrightarrow F^2=-80\sqrt{2}\)

\(\Leftrightarrow F=-4\sqrt{5\sqrt{2}}\)

14 tháng 7 2017

ai lam ho voi

14 tháng 7 2017

A=\(\sqrt{\left(4+\sqrt{8}\right)^2}\)\(-\sqrt{\left(4-\sqrt{8}\right)^2}\)=\(4+\sqrt{8}\)\(-\left(4-\sqrt{8}\right)\)=\(2\sqrt{8}\)

Giờ mình chỉ giải đc câu a thôi để hồi nao mình rảnh giải típ cho

18 tháng 9 2016

26, đặt bthuc là A suy ra A2=4+4+2\(\sqrt{16-\left(10+2\sqrt{5}\right)}\) suy ra A2=8+2(\(\sqrt{5}\) -1) suy ra A=\(\sqrt{6+2\sqrt{5}}\)=\(\sqrt{5}\)+1

40, tương tự

19 tháng 9 2016

thanks p nhìuvui

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

7.

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+2\sqrt{4.3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{(\sqrt{4}+\sqrt{3})^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10(2+\sqrt{3})}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-2.5\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{(5-\sqrt{3})^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5(5-\sqrt{3})}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

25 tháng 6 2018

1) \(\sqrt{21+12\sqrt{3}}=\sqrt{3^2+2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}=\sqrt{\left(3+2\sqrt{3}\right)^2}\)

                                                                       \(=\left|3+2\sqrt{3}\right|=3+2\sqrt{3}\)

2) \(\sqrt{57-40\sqrt{2}}=\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}=\sqrt{\left(5-4\sqrt{2}\right)^2}\)

                                                                           \(=\left|5-4\sqrt{2}\right|=4\sqrt{2}-5\)

3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

a) \(\sqrt{19-6\sqrt{2}}=3\sqrt{2}-1\)

b) \(\sqrt{11-6\sqrt{2}}=3-\sqrt{2}\)

d) \(\sqrt{21+12\sqrt{3}}=2\sqrt{3}+3\)

e) \(\sqrt{57-40\sqrt{2}}=4\sqrt{2}-5\)

a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)

c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3\)

=6

7 tháng 7 2023

a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)

\(A=4-\sqrt{15}+\sqrt{15}\)

\(A=4\)

b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)

\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)

\(B=2-\sqrt{3}-1+\sqrt{3}\)

\(B=1\)

c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)

\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)

\(C=3\sqrt{5}-2-3\sqrt{5}-2\)

\(C=-4\)

d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)

\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)

\(D=2\sqrt{5}+3-2\sqrt{5}+3\)

\(D=6\)