CẦN GẤP!!
Chứng minh:
a) m3+20m chia hết ch 48 với m là số nguyên chẵn
b) n12-n8-n4+513 chia hết cho 512 với n là số nguyên lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.
$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$
$=(n^4-1)(n^4-1)(n^4+1)$
$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$
$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$
$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2
$\Rightarrow [k(k+1)]^2\vdots 4$
Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$
$\Rightarrow A\vdots 64.4.2=512$ (đpcm)
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
n12-n8-n4+513 = (n12-n8)-(n4-1)+512 = n8(n4-1)-(n4-1)+512 = (n4-1)(n8-1)+512 = (n4-1)2(n4+1)+512 = (n4-1)2(n4+1)+512 =
= (n-1)2(n+1)2(n2+1)2(n4+1)+512
Ta có: 512=29
Nhận thấy 512 chia hết cho 512
Xét: n=1 => (n-1)2(n+1)2(n2+1)2(n4+1)=0 => n12-n8-n4+513=512 chia hết cho 512
n>1, n lẻ => (n-1)2; (n+1)2; (n2+1)2 và (n4+1) là các số chẵn và trong đó có ít nhất 2 số chia hết cho 4
=> (n-1)2(n+1)2(n2+1)2(n4+1) là số có dạng: (2k)5(4n)2 = 25.24.k5.n5 = 512.a chia hết cho 512
=> (n-1)2(n+1)2(n2+1)2(n4+1)+512 chia hết cho 512
=> n12-n8-n4+513 Chia hết cho 512 với mọi n lẻ
Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Ta có m là số nguyên chẵn
=> m có dạng 2k
=> m3+20m=(2k)3+20.2k
=8k3+40k=8k(k2+5)
Cần chứng minh k(k2+5) chia hết cho 6
Nếu k chẵn => k(k2+5) chia hết cho 2
Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2
Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3
Nếu k chia 3 dư 1 hoặc dư 2 thì
k có dạng 3k+1 hoặc 3k+2
=> (3k+1)[(3k+1)2+5)]
=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3
=> k(k2+5) chia hết cho 3
Nếu k chia 3 dư 2
=> k có dạng 3k +2
=> k(k2+5)=(3k+2)[(3k+2)2+5]
=(3k+2)(9k2+12k+9)
Vì 9k2+12k +9 chia hết cho 3
=> k(k^2+5) chia hết cho 3
=> k(k2+5) chia hết cho 6
=> 8k(k2+5) chia hết cho 48
=> dpcm