K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

M=1/10 + 1/15 + 1/21 +....+  1/120

M=2/20 +2/30+2/42+....+2/240

M=2/4.5 + 2/5.6 + 2/6.7 +.....+ 2/15.16

M=2.(1/4.5 +......+ 1/15.16)

M=2.(1/4 -1/5 +1/5 - 1/6 +.....+ 1/15 - 1/16)

M=2.(1/4 - 1/16)

M=2.(4/16 - 1/16)

M=2. 3/16

M=6/16=3/8 

Có 1/3 = 8/24 < 9/24 = 3/8 =>1/3<M

Có 1/2 = 4/8>3/8 =>1/2 >M

=> 1/3 < M < 1/2

20 tháng 4 2018

cảm ơn bạn rất nhiều

19 tháng 2 2017

a/ \(\frac{2}{3}+\frac{4}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)

\(\Rightarrow\frac{82}{105}< \frac{x}{105}< \frac{92}{105}\)

\(\Rightarrow82< x< 92\)

\(\Rightarrow x=\left\{83;84;85;86;87;88;89;90;91\right\}\)

b/ \(-\frac{7}{15}+\frac{8}{60}+\frac{24}{90}\le\frac{x}{15}\le\frac{3}{5}+\frac{8}{30}+-\frac{4}{10}\)

\(\Rightarrow-\frac{1}{15}\le\frac{x}{15}\le\frac{7}{15}\)

\(\Rightarrow-1\le x\le7\)

\(\Rightarrow x=\left\{-1;0;1;2;3;4;5;6;7\right\}\)

5 tháng 7 2019

\(\frac{1}{M}=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{59.60}{2}}\)

\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}\)

\(\frac{1}{M}=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{60}\right)\)

\(\frac{1}{M}=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)

-theo t đề là M chứ ko phải 1/M 

24 tháng 4 2019

Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\) (đpcm)

*đpcm = điều phải chứng minh

17 tháng 10 2016

a) \(\frac{7}{15}+\frac{9}{10}+\frac{8}{15}-\frac{-1}{10}-\frac{20}{10}+\frac{1}{157}\)

\(=\frac{7}{15}+\frac{9}{10}+\frac{8}{15}+\frac{1}{10}-\frac{20}{10}+\frac{1}{157}\)

\(=\left(\frac{7}{15}+\frac{8}{15}\right)+\left(\frac{9}{10}+\frac{1}{10}\right)-2+\frac{1}{157}\)

\(=1+1-2+\frac{1}{157}\)

\(=2-2+\frac{1}{157}\)

\(=0+\frac{1}{157}=\frac{1}{157}\)

b) \(\frac{1}{13}+\frac{16}{7}+\frac{3}{105}-\frac{9}{7}-\frac{-12}{13}\)

\(=\frac{1}{13}+\frac{16}{7}+\frac{1}{35}-\frac{9}{7}+\frac{12}{13}\)

\(=\left(\frac{1}{13}+\frac{12}{13}\right)+\left(\frac{16}{7}-\frac{9}{7}\right)+\frac{1}{35}\)

\(=1+1+\frac{1}{35}\)

\(=2+\frac{1}{35}\)

\(=\frac{70}{35}+\frac{1}{35}=\frac{71}{35}\)

22 tháng 7 2016

Ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right)\)