K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Hình tự vẽ nha )

Ta có : AB = AE ( gt ) 

            AD = AC ( gt ) 

Do đó : AB + AD = AC + AE

        => BD = EC 

        => Tứ giác BDEC là hình thang ( vì trong hình thang có hai đường chéo bàng nhau ) 


 

11 tháng 6 2018

Hình:

A B C D E

Giải:

Ta có:

\(AB+AD=AC+AE\) (Vì \(AB=AE;AC=AD\))

\(\Leftrightarrow BD=CE\)

=> Tứ giác BCDE là hình thang (vì trong hình thang hai đường chéo bằng nhau)

Vậy tứ giác BCDE là hình thang (đpcm)

16 tháng 11 2021

Xét tứ giác BCDE có 

A là trung điểm của EC

A là trung điểm của BD

Do đó: BCDE là hình bình hành

mà \(\widehat{EDC}=90^0\)

nên BCDE là hình chữ nhật

8 tháng 10 2022

Ủa sao góc D bằng 90° vậy

Xét tứ giác BCDE có 

A là trung điểm của BD

A là trung điểm của CE

Do đó: BCDE là hình bình hành

6 tháng 10 2021

Vì A là trung điểm của BD và CE nên BCDE là hbh

6 tháng 10 2021

sai r

30 tháng 9 2019
Giúp mik với mik cần thank
30 tháng 9 2019

Đề bài bị sai

Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.

Bài giải:

A B C D E N M Q P

a) \(\Delta\)ABC đều

=> ^BAC = 60 độ 

mà ^ EAD = ^BAC ( đối đỉnh)

=> ^EAD = 60 độ 

Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD 

=> \(\Delta\)EAD đều

=> ^EDA  = ^ABC (= 60 độ )  mà hai góc này ở vị trí so le trong 

=> ED//BC  (1)

Xét \(\Delta\) EAB và \(\Delta\)DAC có:

AE = AD ;

^ EAB = ^DAC ( đối đỉnh)

AB = AC

=> \(\Delta\)EAB = \(\Delta\)DAC

=> ^BEA = ^CDA 

mà ^ AED = ^ ADE ( \(\Delta\)AED đều )

=> ^ BEA + ^AED = ^CDA + ^DAC 

=> ^BED = ^CDA  (2)

Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.

b) ED // BC ( theo 1)

=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)

=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)

=> EN//CQ

=> CNEQ là hình thang.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: Xét ΔACE vuông tại A có AC=AE

nên ΔACE vuông cân tại A

góc ABD=góc AEC=45 độ

=>BD//EC