giải pt
(2x+1)(x+1)2(2x+3)-18=0
các cậu làm ơn giúp mìn với mình đang vội cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.2x+7x+x=-270\)
\(10x=-270\)
\(x=-27\)
\(b,\left(x-1\right)\left(x-9\right)=0\)
\(=>x-1=0\) \(=>x=1\)
\(x-9=0=>x=9\)
Vậy \(x\in\left\{1;9\right\}\)
cho mình hỏi ạ...bài a, sao bạn là ra là 10x ạ?
Bạn không thích trả lời cũng được ạ...!
Ta có : |2x - 5| + |4 + x| = 0
Mà : |2x - 5| \(\ge0\forall x\)
|4 + x| \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left|2x-5\right|=0\\\left|4+x\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=5\\x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-4\end{cases}}\)
k cho mk nha
x^4-2x^3+3x^2-2x+1
=(x^4-2x^3+x^2)+(x^2-2x+1)
=x^2(x^2-2x+1)+(x^2-2x+1)
=(x^2+1)(x^2-2x+1)
=(x^2+1)(x-1)^2
ĐKXĐ: \(x\ne1;x\ne-1\)
\(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\) \(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}-\dfrac{4x}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{x^2+2x+1-4x}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{x-1}{2\left(x+1\right)}\)
\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)
\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)
Vậy a = 2; b = 1; c = 1.
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Để phương trình có vô số nghiệm thì m=3
\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(4x^2+8x+3\right)-18=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\Rightarrow a\left(4a-1\right)-18=0\)
\(\Leftrightarrow4a^2-a-18=0\)
\(\Leftrightarrow\left(4a^2+8a\right)+\left(-9a-18\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(4a-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=\frac{9}{4}\end{cases}}\)
\(\Rightarrow x^2+2x+1=\frac{9}{4}\)
\(\Leftrightarrow4x^2+8x-5=0\)
\(\Leftrightarrow\left(4x^2-2x\right)+\left(10x-5\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)