Tính giá trị biểu thức sau:
A= sin2 20 độ + sin2 30 độ + sin2 40 độ + sin2 70 độ + sin2 60 độ + sin250 độ - tan245 độ
Các bạn giải nhanh giúp mình nhé, mk sẽ hậy tạ sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
= cos260o - cos250o - sin250o + sin260o
= (cos260o + sin260o) - (cos250o + sin250o)
= 1 - 1 = 0
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
= sin265o - sin255o + cos245o - cos255o + cos265o
= (sin265o + cos265o) - (sin255o + cos255o) + cos245o
= 1 - 1 +1/2
= 1/2
Bạn biến đổi cuối cùng bằng :A=(sin2\(\alpha\)+\(\cos^2\alpha\))2=12=1
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
Chọn C.
Từ giả thiết ta suy ra:
B = tan2x (sin2x - 1) + sin2 x = -tan2x.cos2x + sin2x
\(S_{HKE}=S_{ABC}-S_{AKE}-S_{BHE}-S_{CHK}\)
\(\Leftrightarrow\dfrac{S_{HKE}}{S_{ABC}}=1-\dfrac{S_{AKE}}{S_{ABC}}-\dfrac{S_{BHE}}{S_{ABC}}-\dfrac{S_{CHK}}{S_{ABC}}\)
\(\Leftrightarrow\dfrac{1}{4}=1-\dfrac{\dfrac{1}{2}AE.AK.sinA}{\dfrac{1}{2}AB.AC.sinA}-\dfrac{\dfrac{1}{2}BH.BE.sinB}{\dfrac{1}{2}AB.BC.sinB}-\dfrac{\dfrac{1}{2}CH.CK.sinC}{\dfrac{1}{2}AC.BC.sinC}\)
\(\Leftrightarrow\dfrac{AE.AK}{AB.AC}+\dfrac{BH.BE}{AB.BC}+\dfrac{CH.CK}{AC.BC}=\dfrac{3}{4}\)
(Để ý rằng \(\dfrac{AE}{AC}=cosA\) do tam giác ACE vuông tại E và tương tự...)
\(\Leftrightarrow cosA.cosA+cosB.cosB+cosC.cosC=\dfrac{3}{4}\)
\(\Leftrightarrow cos^2A+cos^2B+cos^2C=\dfrac{3}{4}\)
\(\Leftrightarrow1-sin^2A+1-sin^2B+1-sin^2C=\dfrac{3}{4}\)
\(\Leftrightarrow sin^2A+sin^2B+sin^2C=\dfrac{9}{4}\)
\(P.sina=\dfrac{sina}{sin2a.sina}+\dfrac{sina}{sin3a.sin2a}+...+\dfrac{sina}{sin\left(n+1\right)a.sinna}\)
\(=\dfrac{sin\left(2a-a\right)}{sin2a.sina}+\dfrac{sin\left(3a-2a\right)}{sin3a.sin2a}+...+\dfrac{sin\left[\left(n+1\right)a-na\right]}{sin\left(n+1\right)a.sinna}\)
\(=\dfrac{sin2a.cosa-cos2a.sina}{sin2a.sina}+\dfrac{sin3a.cos2a-cos3a.sin2a}{sin3a.sin2a}+\dfrac{sin\left(n+1\right)a.cosna-cos\left(n+1\right)a.sinna}{sin\left(n+1\right)a.sinna}\)
\(=cota-cot2a+cot2a-cot3a+...+cot\left(na\right)-cot\left(n+1\right)a\)
\(=cota-cot\left(n+1\right)a\)
\(\Rightarrow P=\dfrac{cota-cot\left(n+1\right)a}{sina}\)
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
kết quả là 2