chứng minh luôn tìm được 1 số có các chữ số giống nhau chia hết cho 2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng chưa hiểu lắm! Để mình nghĩ đã! Mình là học sinh chuyên Toán nên sẽ nghĩ ra sơm thôi! Đợi chút nhé
1)
Xét 2004 số đề kết thúc là 4 chữ số 2002 :
20022002; 200220022002 ; ...; 20022002...2002
| 2005 cụm 2002 |
Có 2004 số; mà khi chia cho 2003 chỉ có thể có 2003 số dư nên theo nguyên lý Đi-ríc-lê; có ít nhất hai số có cùng số dư khi chia cho 2003; thì hiệu chúng sẽ là bội của 2003.
Gọi 2 số đó là 20022002...2002; 200220022002...2002
| n cụm 2002 | |m cụm 2002| \(\left(2\le n< m\le2005\right)\)và m,n là các số tự nhiên.
Suy ra :
200220022002...2002 - 20022002...2002 chia hết cho 2003
| m cụm 2002 | | n cụm 2002 |
= 20022002...200220020000000...0000 chia hết cho 2003
| m - n cụm 2002 | | 4n chữ số 0 |
\(\Rightarrow200220022002...2002.10^{4n}\) chia hết cho 2003
| m - n cụm 2002 |
Mà (10;2003) = 1 nên (104n;2003)=1
Suy ra 200220022002...2002 chia hết cho 2003
| m - n cụm 2002 |
Số này kết thúc là ...2002
aaaaaa= a.111111=a.7.15873
vì 7 chia hết cho 7
=> aaaaaa chia hết cho 7
aaaaaa=a.111111
suy ra a.7.15873
suy ra 7 chia hết cho 7
nên aaaaaa chia hết cho 7
a) Các số nguyên tố lớn hơn 5 sẽ có tận cùng là: 1, 3, 7.
Như vậy trong 5 số nguyên tố lớn hơn 5 sẽ có ít nhất hai có cùng chữ số tận cùng, suy ra hiệu hai số này chia hết cho 10.
b) Gọi số cần tìm là \(\overline{ab}\) (a,b là số nguyên tố).
Theo bài ra ta có: \(\overline{ab}.a.b=\overline{aaa}\) \(\Leftrightarrow\overline{ab}.a.b=b.111\) \(\Leftrightarrow\overline{ab}.a=3.37\).
Suy ra \(\hept{\begin{cases}a=3\\b=7\end{cases}}\).
Gọi số đó là \(\overline{aaaaaa}\)
*) Tổng các chữ số của số trên là 6a ⋮ 3
\(\Rightarrow\overline{aaaaaa}⋮3\) (1)
*) \(\overline{aaaaaa}\)
\(=a.100000+a.10000+a.1000+a.100+a.10+a\)
\(=a\left(100000+10000+1000+100+10+1\right)\)
\(=a.111111⋮11\)
=> \(\overline{aaaaaa}⋮11\) (2)
Lại có: 11 và 3 là 2 số nguyên tố cùng nhau (3)
Từ (1); (2); (3) => \(\overline{aaaaaa}⋮33\)