K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

  a) HM là đường trung bình của ∆CBD nên HM//BD, mà HM ( HE nên HE ( BD hay HE là một đường cao của ∆BDH, ngoài ra BE là đường cao của ∆BDH nên E là trực tâm của tam giác BDH

b) Gọi BH cắt AC ở Q, DE cắt BH ở P. ∆CHQ = ∆DHP (cạnh huyền,góc nhọn) nên HQ = HP. ∆HQF = ∆HPE (g.c.g) nên HE = HF

( Hướng dẫn thoi )

23 tháng 7 2016

cho t nhờ tí nha 
Mọi người ơi có ai làm đc bài này thì vào tường cuae giải giúp e nha 1 câu cũng đc à e cần trong tối nay ạ

Bài 1: làm phép chia (mọi người gải chi tiết giúp e nha) mọi người ơi e cần gấp lắm mọi người giúp e với

a: (4x² - 9y²): (2x - 3y)

b: (27x³ - 1) : (3x² - 1)

c: (8x³ + 1) : (4x² - 2x + 1)

d: (x² - 3x +xy - 3y): (x + y)

e: (6x³ - 7x² - x + 2): (2x + 1)

f: (x⁴ - x³ + x² + 3x) : (x² - 2x + 3)

25 tháng 2 2017

bạn ơi cho mình hình đc ko?

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

12 tháng 6 2017

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

14 tháng 6 2017

bạn ơi . sao lại cạnh góc vuông - góc nhọn vậy