Cho tam giác abc nhon truc tam h , m la trung diem bc qua h ke duong vuong goc voi hm, cắt ab, ac theo thu tu o e, f
a. Tren tia doi cua tia hc lay d sao cho hd =hc chung minh e la truc tam tam giac dbh
b. Chung minh he = hf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) HM là đường trung bình của ∆CBD nên HM//BD, mà HM ( HE nên HE ( BD hay HE là một đường cao của ∆BDH, ngoài ra BE là đường cao của ∆BDH nên E là trực tâm của tam giác BDH
b) Gọi BH cắt AC ở Q, DE cắt BH ở P. ∆CHQ = ∆DHP (cạnh huyền,góc nhọn) nên HQ = HP. ∆HQF = ∆HPE (g.c.g) nên HE = HF
( Hướng dẫn thoi )
cho t nhờ tí nha
Mọi người ơi có ai làm đc bài này thì vào tường cuae giải giúp e nha 1 câu cũng đc à e cần trong tối nay ạ
Bài 1: làm phép chia (mọi người gải chi tiết giúp e nha) mọi người ơi e cần gấp lắm mọi người giúp e với
a: (4x² - 9y²): (2x - 3y)
b: (27x³ - 1) : (3x² - 1)
c: (8x³ + 1) : (4x² - 2x + 1)
d: (x² - 3x +xy - 3y): (x + y)
e: (6x³ - 7x² - x + 2): (2x + 1)
f: (x⁴ - x³ + x² + 3x) : (x² - 2x + 3)
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
Bài 2:
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).