a) Tìm x biết:
l x - 3 l = 2x + 4
b) Tìm số nguyên n để phân số M = \(\frac{2n-7}{n-5}\) có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\frac{2n-7}{n-5}=\frac{2n-10}{n-5}+\frac{3}{n-5}=2+\frac{3}{n-5}\)
Để M là số nguyên thì \(\frac{3}{n-5}\) là số nguyên <=> 3 chia hết cho n-5
<=>n-5\(\in\)Ư(3)={-3;-1;1;3} <=> n\(\in\){2;4;6;8}
b) Để M là số nguyên thì \(2n-7⋮n-5\)
\(\Leftrightarrow2n-10+3⋮n-5\)
mà \(2n-10⋮n-5\)
nên \(3⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(3\right)\)
\(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{6;4;8;2\right\}\)
Vậy: \(n\in\left\{6;4;8;2\right\}\)
a) Ta có: \(\left|x-3\right|=2x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x+4\left(x\ge3\right)\\x-3=-2x-4\left(x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=4+3\\x+2x=-4+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=7\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\left(loại\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{1}{3}\)
a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên
<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}
<=> 2n thuộc {-5; -4; -2; -1}
Vì n nguyên nên n thuộc {-2; -1}
b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN
<=> 2n + 3 là số nguyên dương nhỏ nhất
<=> 2n + 3 = 1
<=> 2n = -2
<=> n = -1
a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)
\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Nếu 2n+3 = 1 => n = -2 (nhận)
Nếu 2n+3 = 2 => n =-0,5 (loại)
Nếu 2n + 3 = 4 => n = 3,5 (loại)
Nếu 2n + 3 = -1 => n = 1 (nhận)
Nếu 2n + 3 = -2 => n = -2,5 (loại)
Nếu 2n + 3 = -4 => n =-3,5 (loại)
Vậy n \(\in\) {-2;1}
b) A GTNN => \(\frac{2}{2n+3}\) có GTLN
=> 2n + 3 là số nguyên dương nhỏ nhất
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Để A nguyên thì 1/n+3 nguyên
hay n + 3 thuộc Ư(1) = { 1 ; -1 ]
=> n thuộc { -2 ; -4 } thì A nguyên
\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2-\frac{1}{n+3}\)
Để A có giá trị là số nguyên
=> 1 chia hết cho n + 3
=> \(n+3\inƯ\left(1\right)\)
=> \(n+3\in\left\{1;-1\right\}\)
=> \(n\in\left\{-2;-4\right\}\)
Vậy A có giá trị là số nguyên khi n = -2 hoặc n = -4
Ta có :
\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)
để A \(\in\)Z \(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 2 | 1 | 5/2 | 1/2 | 3 | 0 | 9/2 | -3/2 |
vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }
Ta có : \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)
Để \(A\in N\) thì \(\frac{6}{2n-3}\in N\)
\(\Rightarrow6⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
n | 2 | 1 | 2,5 | 0,5 | 3 | 0 | 4,5 | -1,5 |
Vậy ...