K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)

  = \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)

\(4.21+.....+4^{22}.21\)

\(21\left(4+...+4^{22}\right)⋮21\)

Vậy A chia hết cho 21

Ai k mik mik k lại nha

13 tháng 7 2017

Lâu r chị k nhớ lắm nhé

CM A chia hết cho 20

A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)

A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)

   = 4(1+4) + 4^3(1+4) +...+4^23(1+4)

   = (1+4)(4+4^3+4^5+...+4^23)

   =5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)

Mà UCLN(4,5)=1 (3)

Vậy A chia hết cho 4.5 =20

CM A chia hết cho 21

A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)

   = 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)

   = (1+4+4^2)(4+4^4+...+4^22)

   = 21(4+4^4+...+4^22) chia hết cho 21

Vậy A chia hết cho 24.

Chúc e học giỏi!

6 tháng 8 2016

     4 + 4+ 4+ 4+ ... + 423 + 424

=  4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)

=   20 + 42x20 + ... + 422x20

=   20x(1+42+...+422)

Suy ra: A chia hết cho 20

     4 + 4+ 4+ 4+ ... + 423 + 424

=  (4 + 4+ 43) + ... + (422 + 423 + 424)

=   4x(1+4+42) + ... + 422x(1+4+42)

=   4x21 + ... + 422x21

=   (4+...+422)x21

Suy ra: A chia hết cho 21

Vì A chia hết cho 21 , A chia hết cho 20

Suy ra: A chia hết cho 21x20=420

26 tháng 10 2017

 => 21 x 20 = 420

k cho mk nha

12 tháng 8 2019

A=4+4^2+4^3+...+4^24

A=(4 + 4^2)+(4^3 + 4^4)+...+(4^23 + 4^24)

A=20.(1+4^4+...+4^24)chia hết cho 20

30 tháng 10 2016

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

9 tháng 9 2015

\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)

\(A=20.1+20.2^4+.......+20.2^{24}\)

\(A=20.\left(1+2^4+..........+2^{24}\right)\)

Vậy A chia hết cho 20

\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)

\(A=4.21+4^4.21+......+4^{20}.21\)

\(A=21.\left(1+4^4+......+4^{20}\right)\)

Vậy A chia hết cho 21

\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)

\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)

Vậy A chia hết cho 420

NM
2 tháng 1 2022

ta có 

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)

\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20

\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21

thế nê A chia hết cho 20x21 =420

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!