Cho A = 4 + 4^2 + 4^3 + ... + 4^23 + 4^24
CMR : A chia hết cho 20 , A chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 + 42 + 43 + 44 + ... + 423 + 424
= 4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)
= 20 + 42x20 + ... + 422x20
= 20x(1+42+...+422)
Suy ra: A chia hết cho 20
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Suy ra: A chia hết cho 21
Vì A chia hết cho 21 , A chia hết cho 20
Suy ra: A chia hết cho 21x20=420
A=4+4^2+4^3+...+4^24
A=(4 + 4^2)+(4^3 + 4^4)+...+(4^23 + 4^24)
A=20.(1+4^4+...+4^24)chia hết cho 20
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
Cho A= 4+42+43+....+423+424. Chứng Minh : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
ta có
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)
\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21
thế nê A chia hết cho 20x21 =420
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)
= \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)
= \(4.21+.....+4^{22}.21\)
= \(21\left(4+...+4^{22}\right)⋮21\)
Vậy A chia hết cho 21
Ai k mik mik k lại nha
Lâu r chị k nhớ lắm nhé
CM A chia hết cho 20
A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
= 4(1+4) + 4^3(1+4) +...+4^23(1+4)
= (1+4)(4+4^3+4^5+...+4^23)
=5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)
Mà UCLN(4,5)=1 (3)
Vậy A chia hết cho 4.5 =20
CM A chia hết cho 21
A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)
= 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)
= (1+4+4^2)(4+4^4+...+4^22)
= 21(4+4^4+...+4^22) chia hết cho 21
Vậy A chia hết cho 24.
Chúc e học giỏi!