cmr nếu các số nguyên a,b,c thỏa mãn b^2-4ac và b^2+4ac đồng thời là số chính phương thì a.b.c chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Chứng minh được: mọi số dạng 3k±2,5k±2 đều ko fai số chính phương
- Nếu b chẵn thì abc chia hết 2
Nếu b lẻ thì b2=8k+1 (k thuộc Z)=>b2±4ac là SCP lẻ.đặt b2±4ac=8m+1 (m thuộc Z)
=>4ac chia hết 8 =>ac chia hết 2 =>abc chia hết 2 (1)
- Nếu b chia hết 3 =>abc chia hết 3
Nếu b ko chia hết 3 thì b2 chia 3 dư 1.khi đó ac ko chia hết 3 thì b2±4ac có dạng 3p±2 ko là SCP =>ac chia hết 3 =>abc chia hết 3 (2)
- Nếu b chia hết 5 thì abc chia hết 5
Nếu b ko chia hết 5 thì b2 chia 5 dư 1.khi đó ac ko chia hết 5 thì b2±4c có dạng 5q±2 ko là SCP =>ac chia hết 5 =>abc chia hết 5 (3)
Từ (1) (2) (3) và vì (2,3,5)=1 nên abc chia hết 30
https://diendantoanhoc.net/topic/104068-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-b2-4ac-kh%C3%B4ng-ph%E1%BA%A3i-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Xem ở link này (mình gửi cho)
Học tốt!!!!!!!!
Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào
1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8
Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5