Cho x>0 thỏa mãn điều kiện x^2 + 1/x^2 = 7 .Tính x^5 + 1/x^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)\)
\(=\left(x+\frac{1}{x}\right)\left(7-1\right)\)(vì \(x^2+\frac{1}{x^2}=7\))
\(=6\left(x+\frac{1}{x}\right)\)
Đặt \(x+\frac{1}{x}=a\)thì \(\left(x+\frac{1}{x}\right)=a^2\). Suy ra \(a^2-2=x^2+\frac{1}{x^2}\)
\(\Rightarrow a^2-2=7\)(vì \(x^2+\frac{1}{x^2}=7\))
\(\Rightarrow a^2=9\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
Vì \(x\inℝ,x>0\)nên \(x+\frac{1}{x}>0\)
\(\Rightarrow\) \(\left(x+\frac{1}{x}\right)^2=3^2\Rightarrow x+\frac{1}{x}=3\)
Do đó \(x^3+\frac{1}{x^3}=6.3=18\)
Ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+1\)
Mà \(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18=126\)
\(\Rightarrow x^5+\frac{1}{x^5}+1=126\)
\(\Rightarrow x^5+\frac{1}{x^5}=125\)
Vậy với \(x\inℝ,x>0\)và \(x^2+\frac{1}{x^2}=7\)thì \(x^5+\frac{1}{x^5}=125\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)
\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)
\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)
\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)
\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)
Ta có: \(x^2+\frac{1}{x^2}=14\)(1)
=> \(x^2+\frac{1}{x^2}+2=16\)
<=> \(\left(x+\frac{1}{x}\right)^2=16\)
<=> \(x+\frac{1}{x}=4\) (Vì x > 0)
<=> \(\left(x+\frac{1}{x}\right)^3=4^3\)
<=> \(x^3+3x+\frac{3}{x}+\frac{1}{x^3}=64\)
<=> \(x^3+\frac{1}{x^3}=64-3\left(x+\frac{1}{x}\right)\)
<=> \(x^3+\frac{1}{x^3}=64-3.4=52\) (2)
Từ (1) và (2) nhân vế theo vế:
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=14.52=728\)
=> \(x^5+\frac{1}{x}+x+\frac{1}{x^5}=728\)
=> \(x^5+\frac{1}{x^5}=728-4=724\)
\(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Leftrightarrow x+\frac{1}{x}=3\)(vì x>0)
<=>\(\left(x+\frac{1}{x}\right)^3=27\Leftrightarrow x^3+3\left(x+\frac{1}{x}\right)+\frac{1}{x^3}=27\Leftrightarrow x^3+\frac{1}{x^3}+3.3=27\Leftrightarrow x^3+\frac{1}{x^3}=18\)
Xét \(\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=x^5+x^3+\frac{1}{x^3}+\frac{1}{x^5}=x^5+\frac{1}{x^5}+18\)
Mặt khác:
\(\left(x+\frac{1}{x}\right)\left(x^4+\frac{1}{x^4}\right)=\left(x+\frac{1}{x}\right)\left[\left(x^2+\frac{1}{x^2}\right)^2-2\right]=\left(x+\frac{1}{x}\right)\left(7^2-2\right)=3.47=141\)
=>\(x^5+\frac{1}{x^5}+18=141\Leftrightarrow x^5+\frac{1}{x^5}=123\)
Cảm ơn bạn rất nhiều kết bạn nha!