cho tam giác ABC có 3 góc nhọn. đường cao AD,BE,CF
a,CM tam iacs ACF đồng dạng tam giác ABE
b,CM tam giác AFE đồng dạng tam giác ACB
c, CM BF.BA+CE.CA=BC2
d, CM \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)(H là trực tâm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698
Lời giải:
a) Xét tam giác $ABE$ và $ACF$ có:
$\widehat{A}$ chung
$\widehat{AEB}=\widehat{AFC}=90^0$
$\Rightarrow \triangle ABE\sim \triangle ACF$ (g.g)
b)
Xét tam giác $CEB$ và $CDA$ có:
$\widehat{C}$ chung
$\widehat{CEB}=\widehat{CDA}=90^0$
$\Rightarrow \triangle CEB\sim \triangle CDA$ (g.g)
$\Rightarrow \frac{CE}{CD}=\frac{CB}{CA}$
$\Rightarrow CD.CB=CE.CA$
Ta có đpcm.
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiêp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có
góc DAB=góc DCH
=>ΔDAB đồng dạng vơi ΔDCH
=>DA/DC=DB/DH
=>DA*DH=DB*DC
c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có
góc DHC=góc FHA
=>ΔHDC đồng dạng vơi ΔHFA
=>HD/HF=HC/HA
=>HF*HC=HD*HA
Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HD*HA