Bài 1:Tìm x biết
a, \(\frac{7}{11}\)< x-\(\frac{1}{7}\)<\(\frac{10}{13}\)
b,\(\frac{7}{9}\)<\(\frac{13}{11}\)- x <\(\frac{15}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x.\left(x-\frac{2}{3}\right)=0\)
\(\Leftrightarrow3x=0\)hoặc \(x-\frac{2}{3}=0\)
\(3x=0\Rightarrow x=0\)
\(x-\frac{2}{3}=0\Rightarrow x=0+\frac{2}{3}=\frac{2}{3}\)
Vậy..
Bài 1 : Ta có:
\(\frac{7+\frac{7}{11}+\frac{7}{23}+\frac{7}{31}}{9+\frac{9}{11}+\frac{9}{23}+\frac{9}{31}}\)
= \(\frac{7.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}{9.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}\)
= \(\frac{7}{9}\)
Bài 2 :
\(\frac{x}{2}+\frac{3x}{4}+\frac{5x}{6}=\frac{10}{24}\)
=> \(\frac{12x+18x+20x}{24}=\frac{10}{24}\)
=> 50x = 10
=> x = 10 : 50
=> x = 1/5
Bài 3 : Để A nhận giá trị nguyên thì 3 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
x + 3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Vậy
a ) \(x+7\frac{4}{5}=9\frac{7}{15}\)
\(x+\frac{39}{5}=\frac{142}{15}\)
\(x=\frac{142}{15}-\frac{39}{5}\)
\(x=\frac{5}{3}\)
b ) \(x-4\frac{9}{11}=\frac{2121}{2222}\)
\(x-\frac{53}{11}=\frac{21}{22}\)
\(x=\frac{21}{22}+\frac{53}{11}\)
\(x=\frac{127}{22}\)
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
Bài 1:
a) \(x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\cdot\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
\(x=1\)
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 =18
x = 17
bài 2 ko bk lm, xl nha
a) \(x-\frac{5}{7}=\frac{1}{9}\Rightarrow x=\frac{1}{9}+\frac{5}{7}\Rightarrow x=\frac{52}{63}\)
b) \(\frac{-3}{7}-x=\frac{4}{5}+\frac{-2}{3}\Rightarrow\frac{-3}{7}-x=\frac{2}{15}\Rightarrow x=\frac{-3}{7}-\frac{2}{15}\Rightarrow x=\frac{-59}{105}\)
c) \(x-\frac{1}{5}=\frac{2}{7}.\frac{-11}{5}\Rightarrow x-\frac{1}{5}=\frac{-22}{35}\Rightarrow x=\frac{-22}{35}+\frac{1}{5}\Rightarrow x=\frac{-3}{7}\)
d) \(\frac{x}{182}=\frac{-6}{14}.\frac{35}{91}\Rightarrow\frac{x}{182}=\frac{-15}{91}\Rightarrow x=\frac{\left(-15\right).182}{91}\Rightarrow x=-30\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
thế mà cũng phải hỏi
Giỏi bạn làm hộ mk cái