Cho 2 góc kề bù \(\widehat{xOy}\)và \(\widehat{yOz}\)gọi \(Om\) là tia phân giác của \(\widehat{xOy}\)vẽ tia \(On⊥Om\)
a/ CMR: Tia \(On\)là tia phân giác của \(\widehat{yOz}\)
b/ CMR: 2 tia phân giác của hai góc kề bù vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a.\)Vì \(\widehat{xOy}\)kề bù với góc \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(60^0+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(\widehat{yOz}=180^0-60^0=120^0\)
\(b.\) Vì \(Ot\)là tia phân giác \(\widehat{xOy}\)\(\Rightarrow\)\(\widehat{tOy}=\frac{\widehat{xOy}}{2}=\frac{60^0}{2}=30^0\)
Vì \(Om\)là tia phân giác \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{yOm}=\frac{\widehat{yOz}}{2}=\frac{120^0}{2}=60^0\)
Vì \(Oy\)nằm giữa 2 tia \(Ot\)và \(Om\) \(\Rightarrow\) \(\widehat{tOy}+\widehat{yOm}=\widehat{tOm}\)
\(\Rightarrow\) \(30^0+60^0=\widehat{tOm}\)
\(\Rightarrow\) \(90^0=\widehat{tOm}\)
Vậy \(\widehat{tOm}\)là góc vuông
Bài 2: Vì góc xOy và yoz kề bù nên góc xOz= 180 độ Ta có : Góc xoy + góc yoz = xOz Hay : 60 độ + góc yoz = 180 độ góc yoz = 180 độ - 60 độ = 120 độ Vậy....
a) Ta có \(\widehat{xOy}\) và \(\widehat{yOz}\) là 2 góc kề bù (theo đề)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)
Hay \(50^0+\widehat{yOz}=180^0\)
\(\Rightarrow\widehat{yOz}=130^0\)
b) Góc mOn ..... bn tự lm ik
Ta có: Om là tia phân giác của \(\widehat{xOy}\) (theo đề)
\(\Rightarrow\)\(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}=\frac{50^0}{2}=25^0\)
Lại có : On là tia phân giác của \(\widehat{yOz}\) (theo đề)
\(\Rightarrow\)\(\widehat{yOn}=\widehat{zOn}=\frac{\widehat{yOz}}{2}=\frac{130^0}{2}=65^0\)
Ta lại có: \(\widehat{mOy} + \widehat{nOy} = 25^0 + 65^0 = 90^0\)
Do đó 2 góc mOy và nOy phụ nhau.
Cái này mình bt làm nek
Vì Om là tia phân giác của\(\widehat{xOy}\)
\(\Rightarrow\widehat{xOm}=\widehat{mOy}=\frac{\widehat{xoy}}{2}\)
Vì On là tia phân giác của \(\widehat{yOz}\)
\(\Rightarrow\widehat{zOn}=\widehat{yOn}=\frac{\widehat{yOz}}{2}\)
Vì Oy nằm giữa On và Om
Nên\(\widehat{mOy}+\widehat{nOy}=\widehat{mOn}=\frac{\widehat{xOz}}{2}\)
Hay\(\frac{\widehat{xOy}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}}{2}\)
\(\Rightarrow\widehat{mOn}=\frac{180^o}{2}=90^o\)
vì góc xOy và yOz là 2 góc kề bù
\(\Rightarrow xoy+yoz=180\)
tia om là tiaphaan giác của góc xoy
\(\Rightarrow moy=mox=xoy:2\)
tia on là tia phân giác của góc yoz
\(\Rightarrow noy=noz=yoz:2\)
\(\downarrow\)
noy:2+moy:2=180