Giải giúp mk bài này nhé , ngày 15/7 mk cần gấp lắm :
(2x-3)(\(\frac{3}{4}x\)+1) =0 \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
Mong các bạn cho mk cả lời giải . Cảm ơn các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
mình giải cho bạn 3 cách nhá . thấy cái nào đc thì làm
cách 1 )
ĐK \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)
Phương trình \(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
\(\Leftrightarrow4\left(2x^2-1\right)-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)
đặt \(\sqrt{2x^2-1}=t\left(t\ge0\right)\)ta được \(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
ta có \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=x^2-6x+9=\left(x-3\right)^2\)
nên phương trình \(\Leftrightarrow\orbr{\begin{cases}t=\frac{3x+1-x+3}{4}\\t=\frac{3x+1+x-3}{4}\end{cases}=>\orbr{\begin{cases}t=\frac{x+2}{2}\\t=\frac{2x-1}{2}\end{cases}}}\)
zơi \(t=\frac{x+2}{2}\)thì \(\sqrt{2x^2-1}=\frac{x+2}{2}\Leftrightarrow\hept{\begin{cases}x\ge-2\\4\left(2x^2-1\right)=\left(x+2\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\7x^2-4x-8=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x=\frac{2\pm\sqrt{60}}{7}\end{cases}\Leftrightarrow x=\frac{2\pm\sqrt{60}}{7}}\)
zới \(t=\frac{2x-1}{2}\)thì \(\sqrt{2x^2-1}=\frac{2x-1}{2}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\4\left(2x^2-1\right)=\left(2x-1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\4x^2+4x-5=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x=\frac{-1\pm\sqrt{6}}{2}\end{cases}\Leftrightarrow x=\frac{-1\pm\sqrt{6}}{2}}\)
kết hợp điều kiện \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)ta đc nghiệm của phương trình là \(\left\{\frac{2\pm\sqrt{60}}{7};\frac{-1\pm\sqrt{6}}{2}\right\}\)
cách 2 )
điều kiện như thế nhé
Phương trình \(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Bình phương hai zế phương trình ta có
\(\Leftrightarrow\left[2\left(3x+1\right)\sqrt{2x^{2-1}}\right]=\left(10x^2+3x-6\right)^2\Leftrightarrow\left(7x^2-4x-8\right)\left(4x^2+4x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x^2-4x-8=0\\4x^2+4x-5=0\end{cases}}\)
giải phương trình \(7x^2-4x-8=0=>\orbr{\begin{cases}x=\frac{2+\sqrt{60}}{7}\\x=\frac{2-\sqrt{60}}{7}\end{cases}}\)
giải phương trình \(4x^2+4x-5=0=>\orbr{\begin{cases}x=\frac{-1+\sqrt{6}}{2}\\x=\frac{-1-\sqrt{6}}{2}\end{cases}}\)
kết luận nhưu cách 1
Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2
<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0
<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0
<=> x4 - x3 - x2 - 5x - 2 = 0
?
a) \(\left(2x-3\right)\left(\frac{3}{4}x+1\right)=0\)
<=>\(\hept{\begin{cases}2x-3=0\\\frac{3}{4}x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=3\\\frac{3}{4}x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{4}\end{cases}}}\)
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Leftrightarrow\hept{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}}\)