Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Gọi O là giao của AC và BD
AB>AO+BO
AD>AO+DO
BC>BO+CO
DC>DO+CO
=>AB+AD+BC+CD>2(AC+BD)
=>(AC+BD)<P/2
AC<AB+BC
AC<AD+DC
BD<BC+CD
BD<AB+AD
=>2(AC+BD)<2*C ABCD
=>AC+BD<C ABCD
Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD.
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có:
AB < OA + OB (1)
BC < OB + OC (2)
CD < OC + OD (3)
DA < OD + OA (4)
(1) + (2) + (3) + (4) :
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD)
hay (1/2)(AB + BC + CD + DA) < AC + BD (*)
Mặt khác :
AC < AB + BC (1')
BD < BC + CD (2')
AC < CD + DA (3')
BD < DA + AB (4')
(1') + (2') + (3') + (4') :
2(AC + BD) > 2(AB + BC + CD + DA)
hay AC + BD < AB + BC + CD + DA (**)
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA
Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD.
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có:
AB < OA + OB (1)
BC < OB + OC (2)
CD < OC + OD (3)
DA < OD + OA (4)
(1) + (2) + (3) + (4) :
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD)
hay (1/2)(AB + BC + CD + DA) < AC + BD (*)
Mặt khác :
AC < AB + BC (1')
BD < BC + CD (2')
AC < CD + DA (3')
BD < DA + AB (4')
(1') + (2') + (3') + (4') :
2(AC + BD) > 2(AB + BC + CD + DA)
hay AC + BD < AB + BC + CD + DA (**)
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA
Chúc bạn học tốt !!!
Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.
Gọi O là giao điểm của AC và BD ta có:
AC+BD=AO+OB+OC+OD>AB+CD=a+c
Tương tự: AC+BD>b+d.
Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2
Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.
Theo bất đẳng thức tam giác ta có:
AC<a+b;AC<c+d
BD<b+c;BD<a+d
⇒2(AC+BD)<2(a+b+c+d).
⇒AC+BD<a+b+c+d.
Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.
Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O
\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)
\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)
\(BC+CD>BD\)
\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)
\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)
\(OB+OC>BC\)
\(OC+OD>CD\)
\(OD+OA>AD\)
\(\Rightarrow2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)
\(BD< AB+AD\) ; \(BD< BC+CD\)
\(\Rightarrow2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Leftrightarrow AC+BD< AB+BC+CD+AD\)
Vậy ta có : \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC+CD+AD\)