K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2021

 B =1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 

 B = 1 - 1/3 + 1/3 - 1/6 + 1/6 - 1/10 + 1/10 - 1/15 + 1/15 - 1/21 + 1/21 - 1/28 

 B = 1 - ( 1/3 + 1/3 - 1/6 + 1/6 - 1/10 + 1/10 - 1/15 + 1/15 - 1/21 + 1/21 ) - 1/28

  B = 1 - 1/28

  B  = 27/28

~ Hok T ~

19 tháng 5 2023

A =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) +  \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\)

A = 2\(\times\) ( \(\dfrac{1}{2}\)  +  \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) +  \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)\(\dfrac{1}{72}\))

A =2\(\times\)\(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\))

A = 2 \(\times\) ( \(\dfrac{1}{1}\)\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\))

 A = 2\(\times\)( 1 - \(\dfrac{1}{9}\))

A = 2 \(\times\) \(\dfrac{8}{9}\)

A = \(\dfrac{16}{9}\)

24 tháng 9 2018

tính thẳng đường í: 1/3+1/6+1/10+1/15+1/21+1/28

= 1/2+1/6+1/12=3/4

24 tháng 9 2018

tinh máy tính đúng đó

8 tháng 8 2020

Bài làm:

Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)

\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)

\(=\frac{1}{2}.\frac{11}{12}\)

\(=\frac{11}{24}\)

8 tháng 8 2020

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)

\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)

\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)

\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)

\(=2\times\left(1-\frac{1}{12}\right)\)

\(=2\times\frac{11}{12}\)

\(=\frac{11}{6}\)

6 tháng 4 2018

A=2/3 . 5/6 . 9/10 . 14/15 . 20/21 . 27/28

A= 9/14

17 tháng 4 2016

\(\frac{1}{2}\) E= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(\frac{1}{2}\) E = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)

\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{9}\)

\(\frac{1}{2}E\) =\(\frac{7}{18}\)

=> E = \(\frac{7}{9}\)

17 tháng 4 2016

E=\(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{28}+\frac{1}{36}\)

\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\)

\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\)

\(\frac{1}{2}E=\frac{3-2}{2.3}+\frac{4-3}{3.4}+...\frac{8-7}{7.8}+\frac{9-8}{8.9}\)

\(\frac{1}{2}E=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{8}{7.8}-\frac{7}{7.8}+\frac{9}{8.9}-\frac{8}{8.9}\)

\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)

E=\(\frac{7}{18}:\frac{1}{2}=\frac{7}{9}\)

15 tháng 4 2018

7/15 nhé bạn!

15 tháng 4 2018

đặt A=1/6+1/10+1/15+1/21+1/28+1/36+1/45

A*2=(1/6*+1/10+1/15+1/21+1/28+1/36+1/45)*2

A*2=1/12+1/20+1/30+1/42+1/56+1/72+1/90

A*2=1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9+1/9*10

A*2=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-/8+1/8-1/9+1/9-1/10

A*2=1/3-1/10

A*2=7/30

A=7/30 / 2

A=7/15

7 tháng 7 2016

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}\)

\(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)

\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{9}\)

\(\frac{1}{2}A=\frac{7}{18}\)

\(A=\frac{7}{18}x2\)

\(A=\frac{7}{9}\)