Tính giá trị của biểu thức :
A = x^7 - 98x^6 - 98x^5 - 98x^4 - 98x^3 - 98^2 - 98x + 1 tại x = 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x=99
=> 98= x-1
thay vào biểu thức t được
x^3- (x-1)x^2 -x.x +1 = x^3 -x^3+x^2 -x^2 +1 = 0+1=1
Thay x = 99 vào biểu thức trên ta được :
\(99^3-98.99^2-99.99+1=970299-960498-9801+1=1\)
Vậy giá trị của biểu thức trên là : 1
nếu thay x = -1
ta có:
-99 + 98 - 97 + ... + 2 - 1 + 1
= -99 + 98 - 97 + ...+ 2
= (98 - 99) + (96 - 97)+...+(2 - 3)
= -1 - 1 - 1 - 1 - 1 -...-1
= -49
Vì \(x=99\Rightarrow98=x-1\)
Thay \(98=x+1\)vào biểu thức A , ta có :
\(A=x^7-\left(x-1\right)x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(\Rightarrow A=x^7-x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(\Rightarrow A=x+1=99+1=100\)