K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

a ĐK \(a>0\)và \(a\ne1\)

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

b. Ta có \(M-1=\frac{\sqrt{a}-1}{\sqrt{a}}-1=\frac{\sqrt{a}-1-\sqrt{a}}{\sqrt{a}}=\frac{-1}{\sqrt{a}}< 0\)

Vậy \(M< 1\)

3 tháng 10 2017

a) Q=\(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)=\(\frac{\sqrt{a}-2}{3\sqrt{a}}\)  b) Ta thấy \(3\sqrt{a}>0\), để Q dương thì \(\sqrt{a}-2>0\Rightarrow a>4\)

25 tháng 8 2016

a) ĐKXĐ: \(x\ge0;x\ne1\)

P=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

 =\(\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{-1-3\sqrt{a}}{a-1}\right)\)

 =\(\frac{\left(a-1\right)^2}{4a}.\frac{-1-3\sqrt{a}}{a-1}\)

 =\(\frac{\left(a-1\right)\left(-1-3\sqrt{a}\right)}{4a}\)

 

 

24 tháng 9 2020

1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)

2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)

\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)

4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)

1 tháng 11 2020

\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)

\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

1 tháng 11 2020

\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)

\(=4\cdot\left(a-1\right)\)

vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33 

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)