K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

\(\frac{9}{10}.100-\left(\frac{5}{2}\left(y+\frac{206}{100}\right)\right):\frac{1}{2}=89\)

\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=89.\frac{1}{2}\)

\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=\frac{89}{2}\)

\(\frac{5}{2}\left(y+\frac{103}{50}\right)=90-\frac{89}{2}\)

\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{180}{2}-\frac{89}{2}\)

\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{91}{2}\)

\(y+\frac{103}{50}=\frac{91}{2}.\frac{2}{5}\)

\(y+\frac{103}{50}=\frac{91}{5}\)

\(y=\frac{91}{5}-\frac{103}{50}\)

\(y=\frac{910}{50}-\frac{103}{50}\)

\(y=\frac{807}{50}\)

18 tháng 8 2019

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)

Vậy \(X=\frac{147}{50}\)

18 tháng 8 2019

( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2

( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2

90 - 5/2 : ( x + 103/50 ) = 89/2

5/2 : ( x + 103/50 ) = 90 - 89/2

5/2 : ( x + 103/50 ) = 91/2

x + 103/50 = 5/2 : 91/2

x + 103/50 = 5/91

x = 5/91 - 103/50

x = -9,123/4550

23 tháng 6 2015

1, \(\frac{1}{2}-\left(6\frac{5}{9}+x-\frac{117}{8}\right):\left(12\frac{1}{9}\right)=0\)

   \(\left(\frac{6.9+5}{9}+x-\frac{117}{8}\right):\frac{12.9+1}{9}=\frac{1}{2}\)

 ( . là nhân nha) 

    \(\left(\frac{59}{9}-\frac{117}{8}+x\right):\frac{109}{9}=\frac{1}{2}\)

    \(\frac{59}{9}-\frac{117}{8}+x=\frac{1}{2}\cdot\frac{109}{9}\)

    \(\frac{59}{9}-\frac{117}{8}+x=\frac{109}{18}\)

   \(x=\frac{109}{18}-\frac{59}{9}+\frac{117}{8}\)

\(x=\frac{113}{8}\)

23 tháng 6 2015

\(\left(y+\frac{1}{3}\right)+\left(y+\frac{2}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)

   \(y+\frac{1}{3}+y+\frac{2}{9}+y+\frac{1}{27}+y+\frac{1}{81}=\frac{56}{81}\)

\(4y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)

\(4y+\frac{49}{81}=\frac{56}{81}\)

\(4y=\frac{7}{81}\)

y      =  7/81:4

y       = 7/324

16 tháng 6 2016

Hỏi đáp Toán

16 tháng 6 2016

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

=>\(3x-\frac{1}{2}=0;\frac{1}{2}y+\frac{3}{5}=0\left(\left|3x-\frac{1}{2}\right|;\left|\frac{1}{2}y+\frac{3}{5}\right|\ge0\right)\)

=>\(x=\frac{1}{6};y=\frac{-6}{5}\)

b)\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

Ta lại có:

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\)

=>\(\frac{3}{2}x+\frac{1}{9}=0;\frac{1}{5}y-\frac{1}{2}=0\Rightarrow x=-\frac{2}{27};y=\frac{5}{2}\)

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

16 tháng 6 2016

đề hơi lạ xem lại

16 tháng 6 2016

Ta có :5/x = 1/8 - y/4 = (1-2y)/8 
<=> x = 5.8/(1-2y) ; thấy 1-2y là số lẻ nên ƯCLN(8,1-2y) = 1 
do đó x/8 = 5/(1-2y) 
Để x, y nguyên khi 1-2y phải là ước của 5 
*Xét 1-2y = -1 => y = 1 => x = -40 
*Xét 1-2y = 1 => y = 0 => x = 40 
*Xét 1-2y = -5 => y = 3 => x = -8 
*Xét 1-2y = 5 => y = -2 => x = 8 
Vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5) 

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3