K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:

1. 

Vì $BD$ là tia phân giác góc $\widehat{B}$ nên:

$\frac{AD}{DC}=\frac{AB}{BC}$

$CE$ là tia phân giác $\widehat{C}$ nên:
$\frac{AE}{EB}=\frac{AC}{BC}$

Mà $AB=AC$ nên $\frac{AD}{DC}=\frac{AE}{EB}$. Theo định lý Talet đảo thì $ED\parallel BC$

Do đó $BEDC$ là hình thang. Mà $\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$\Rightarrow BEDC$ là htc.

2.

$BEDC$ là htc nên $BE=DC(1)$

$\frac{AD}{DC}=\frac{AB}{BC}\Rightarrow AD=\frac{AB.DC}{BC}$

$ED\parallel BC$ nên theo định lý Talet:

$\frac{ED}{BC}=\frac{AD}{AC}$

\(\Rightarrow ED=\frac{AD.BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AB}=DC(2)\)

Từ $(1);(2)\Rightarrow BE=DC=ED$

3.

Xét tam giác $DBC$ và $ECB$ có:

$\widehat{DCB}=\widehat{EBC}$ 

$DC=EB$

$BC$ chung

$\Rightarrow \triangle DBC=\triangle ECB$ (c.g.c)

$\Rightarrow \widehat{B_1}=\widehat{C_1}$

$\Rightarrow \triangle BOC$ cân tại $O$

Do đó trung tuyến $OI$ đồng thời là đường cao 

$\Rightarrow OI\perp BC(*)$

Mặt khác:

$\widehat{B_1}=\widehat{D_1}$ (so le trong)

$\widehat{C_1}=\widehat{E_1}$

$\Rightarrow \widehat{D_1}=\widehat{E_1}$

$\Rightarrow \triangle OED$ cân tại $O$

Do đó trung tuyến $OJ$ đồng thời là đường cao 

$\Rightarrow OJ\perp ED(**)$

Từ $(*); (**)$ mà $ED\parallel BC$ nên $O, I, J$ thẳng hàng.

 

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Hình vẽ:

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có 

BD=CE

BC chung

Do đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Xét ΔABC có

AE/AB=AD/AC

Do đó: DE//BC

10 tháng 7 2015

a) ta có b=c=>bedc cân

b)xét tam giác dek và ekb có

de chung

ek chung

goce chung

=>dek =ekb

=>de=eb(2 canh tuong ung)

tương tự ta có die =dic

=>cd=de

 

20 tháng 8 2016

đúng òi nè