K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

`B.{x in R|x<=-5/4}`

10 tháng 5 2021

\(-8x-10=\left|-8x-10\right|\)

\(\left|-8x-10\right|=-8x-10\) khi \(-8x-10\ge0\Leftrightarrow-8x\ge10\Leftrightarrow x\le-\dfrac{5}{4}\)

PT trở thành :

\(-8x-10=-8x-10\)

\(\Leftrightarrow-8x+8x=-10+10\)

\(\Leftrightarrow0x=0\)

PT có vô số nghiệm

Vậy \(S=\){\(x\in R\)| x\(\le-\dfrac{5}{4}\)}

\(\left|-8x-10\right|=-\left(-8x-10\right)=8x+10\) khi \(-8x-10< 0\Leftrightarrow-8x< 10\Leftrightarrow x>-\dfrac{5}{4}\)

PT trở thành :

\(-8x-10=8x+10\)

\(\Leftrightarrow-8x-8x=10+10\)

\(\Leftrightarrow-16x=20\)

\(\Leftrightarrow4x=-5\)

\(\Leftrightarrow x=-\dfrac{5}{4}\)(KTMĐK)

Vậy \(S=\){\(x\in R\)|x \(\le-\dfrac{5}{4}\)}

=> Đáp án B đúng

10 tháng 5 2021

`B.S={x|x<-8/5}`

`-5x-8=|5x+8|`

`<=>-(5x+8)=|5x+8|`

`<=>5x+8<=0`

`<=>x<=-8/5`

10 tháng 5 2021

`B.S={x|x<=-8/5}`

`-5x-8=|5x+8|`

`<=>-(5x+8)=|5x+8|`

`<=>5x+8<=0`

`<=>x<=-8/5`

Bài 4: B

Bài 5: 

a: {3;5};{3;7};{5;7};{3;5;7};{3};{5};{7};\(\varnothing\)

Bài 1: 

a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)

\(A+\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)

\(=\dfrac{4x^2-8x-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)

\(=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)

\(=\dfrac{-4x}{-x+3}=\dfrac{4x}{x-3}\)

b: Để A<0 thi x/x-3<0

=>0<x<3

a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đúng)

Vậy: S=R\{0;2}

22 tháng 2 2019

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)

\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)

Vậy tập nghiệm của pt là \(S=\varnothing\)

b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

\(\Leftrightarrow x-357=0\Leftrightarrow x=357\) 

Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)

18 tháng 3 2018
https://i.imgur.com/pzS21PI.jpg
31 tháng 3 2019

a,\(2\left(2x-3\right)\ge5\left(2+x\right)+13\)

\(\Leftrightarrow4x-6\ge10+5x+13\)

\(\Leftrightarrow4x-5x\ge10+13+6\)

\(\Leftrightarrow-x\ge29\)

\(\Leftrightarrow x\ge-29\)