K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Vì  \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{1}{11}>\frac{2}{12}\)

\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>6.\frac{2}{12}=1\) \(\left(1\right)\)

Vì \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)

\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< 6.\frac{2}{6}=2\) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< E< 2\Rightarrow E\notin Z\)(đpcm)

28 tháng 10 2019

Ta có: \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Do: \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{2}{11}>\frac{2}{12}\)

\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{2}{12}.6=1\)   \(\left(1\right)\)

Lại có: \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)

\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{2}{6}.6=2\)    \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow1< E< 2\)

                                \(\Rightarrow E\notin Z\)\(\left(đpcm\right)\)

Chúc bạn học tốt !!!

1 tháng 6 2018

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)

\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)

Từ (1);(2)\(\Rightarrow0< D< 1\)

\(\Rightarrowđpcm\)

20 tháng 7 2020

a,\(C>0\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notinℤ\)

c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Ta quy đồng 3 số đầu

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)

\(1< E< 2\)

\(E\notinℤ\)

23 tháng 8 2017

B=\(6\frac{4}{9}-4\frac{4}{9}+3\frac{7}{11}\)

B=\(2+3\frac{7}{11}\)

B=\(5\frac{7}{11}\)

23 tháng 8 2017

B = \(5\frac{7}{11}=\frac{62}{11}\)

C = 1

D = \(\frac{5}{2}=2\frac{1}{2}\)

12 tháng 9 2016

giúp với ạ

13 tháng 9 2016

giải dc nhưng mà hoi lâu

22 tháng 8 2019

a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)

\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)

\(=\frac{2}{3}-\frac{99}{104}\)

\(=-\frac{89}{312}\)

b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)

\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)

\(=\frac{214}{13}-\frac{18}{7}\)

\(=\frac{1264}{91}\)

c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)

\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)

\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)

\(=2+3\frac{7}{11}\)

\(=5\frac{7}{11}\)

\(=\frac{62}{11}\)

d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)

\(=0\)

e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)

\(=-\frac{3}{2}\cdot\frac{5}{3}\)

\(=-\frac{5}{2}\)

f, Đặt \(A=1^2+2^2+3^2+...+100^2\)

\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)

\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)

\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)

Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101 

3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )

3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101 

3B = 100 . 101 . 102

B = \(\frac{100\cdot101\cdot102}{3}\)

B = 343400

Thay B vào A. Ta được :

\(A=343400-\left(1+2+3+...+100\right)\)

Thay C = 1 + 2 + 3 + ... + 100

Dãy số 1; 2; 3; ...; 100 có số số hạng là:

( 100 - 1 ) : 1 + 1 = 100 ( số hạng )

Tổng của dãy số đó là :

( 100 + 1 ) . 100 : 2 = 5050

=> C = 5050

Thay C vào A. Ta được :

\(A=343400-5050\)

\(A=338350\)

Vậy A = 338350

5 tháng 9 2019

A = 5/7.(1+9/13) − 5/7.9/13

A= 5/7.(1+9/13 - 9/13)

A = 5/7.1

A = 5/7

B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41

B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5

B = 1 - 1 + 0.5

B = 0.5

C = −4/13.5/17 + (−12/13).4/17 + 4/13

C = 4/13.(-5/17) + (−12/13).4/17 + 4/13

C = 4/13.(-5/17 + 1) + (−12/13).4/17

C = 4/13.(−12/17) + (−12/13).4/17

C = (4.-12)/(13.17) + (−12/13).4/17

C = 4/17.(−12/13) + (−12/13).4/17

C = 4/17.(−12/13).2

C = 96/221

D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)

D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)

D = -1/62 - 2/9+ (−5/18)

D = -1/12 - ( 2/9+ (−5/18) )

D = -1/12 - ( 4/18+ (−5/18) )

D = -1/12 - (-1/18)

D = -1/12 + 1/18

D = -3/36 + 2/36

D = -1/36

E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11

E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11

E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11

E = ( - 1 + 1):5/11

E = 0:5/11

E = 0