Cho mệnh đề P(x): x^3 - x chia hết cho 24"
Chứng minh P(x) đúng với mọi x>=3
=3 "> =3 "> =3 " />
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=x^3-a^2.x+2016.b
Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x
có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)
+nếu x chia hết cho 3=>P(x) chia hết cho 3
+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3
+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3
=>ĐPCM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
- Xét làm 3 trường hợp:
+ Với x có dạng 3k thì: \(\left(3\left(k+4\right)\right)\left(3k+20\right)\left(3k+34\right)⋮3\)
Vì thừa số đầu chia hết cho 3;
+ Với x có dạng 3k+1 thì :
\(=>\left(3k+13\right)\left(3\left(k+7\right)\right)\left(3k+35\right)⋮3\)
Vì thừa số thứ 2 chia hết cho 3;
+Với x có dạng 3k+2 thì:
\(=>\left(3k+14\right)\left(3k+22\right)\left(3\left(k+12\right)\right)⋮3\)
Vì thừa số thứ 3 chia hết cho 3;
=> \(\left(x+12\right)\left(x+20\right)\left(x+34\right)⋮3\) với mọi x thuộc N;
CHÚC BẠN HỌC TỐT........
êfvfdfvf
đúng rồi ạ