Rút gọn:
\(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2\)
Bạn nào xong sớm, nhanh, đúng nhất mình tick cho!TKS!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a2(b - c) + b2(c - a) + c2(a - b)
= (a - b)(c - a)(c - b)
Ta lại có:
a4(b2 - c2) + b4(c2 - a2) + c4(a2 - b2)
= (a - b)(c - a)(c - b)(a +b)(b + c)(c + a)
Từ đây ta có phân số ban đầu sẽ bằng
\(\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt \(b-c=x,c-a=y,a-b=z\)
\(\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(b-c\right)\left(c-a\right)\left(a-b\right)\)(1)
Ta có:
: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-b+b-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-b\right)+b^2\left(b-a\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-c-b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)(2)
Từ (1) và (2) giá trị biểu thức cần tìm là -3.
Chúc bạn học tốt
a.\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac-2\left(a^2+2ab+b^2\right)=2a^2+2b^2+2c^2+4ab-2a^2-2ab-2b^2=2c^2+2ab\)
b. \(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\left(a^2+b^2-c^2+a^2-b^2+c^2\right)=\left(2b^2-2c^2\right).2a^2=4a^2\left(b^2-c^2\right)=4a^2b^2-4a^2c^2\)
Ta có \(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2-ab+b^2+b^2-bc+c^2+c^2-ac+a^2}\)
\(=\frac{5\left(...\right)}{2\left(...\right)}=\frac{5}{2}\)
Sửa đề cho nó đẹp
\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)
\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a-b}{b+c}\)
\(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2\)
\(=4a^2+4b^2+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)