Chứng minh rằng luôn tìm được ít nhất 1 số gồm toàn chữ số 9 và chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với số nguyên tố \(p\)bất kì, xét dãy số: \(2,22,...,222...22\)(\(p+1\)chữ số \(2\)).
Dãy số đó có \(p+1\)số hạng, do đó theo nguyên lí Dirichlet có ít nhất hai số trong dãy số có cùng số dư khi chia cho \(p\).
Giả sử đó là số \(a=22...22\)(\(k\)chữ số \(2\)) và \(b=222...22\)(\(l\)chữ số \(2\)) với \(l>k\ge1\).
Khi đó số \(b-a=22...200...0\)sẽ chia hết cho \(p\).
Ta có đpcm.