Tính:
\(a) \frac{790^4}{79^4} \)
\(b) \frac{3^2}{0,375^2} \)
\( c) 3^2.\frac{1}{243}.81^2.\frac{1}{3^3} \)
\( d) (4.2^5):(2^3.\frac{1}{16})\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ns j v bn ? mk đăng bài lên để hỏi mn chứ bn đừng cmt thế nha
\(a;3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^3}\)
\(=3^2\cdot\frac{1}{3^5}\cdot3^4\cdot\frac{1}{3^3}\)
\(=\left(3^2\cdot3^4\right)\cdot\left(\frac{1}{3^5}\cdot\frac{1}{3^3}\right)\)
\(=3^6\cdot\frac{1}{3^8}\)
\(=\frac{3^6}{3^8}\)
\(=\frac{1}{3^2}=\frac{1}{9}\)
\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)
= \(9.\frac{1}{243}.6561.\frac{1}{27}\)
= \(9\)
b ) \(\left(4,2\right)^5:\left(2^3.\frac{1}{16}\right)\)
= \(\left(\frac{21}{5}\right)^5:\left(8.\frac{1}{16}\right)\)
= \(130691232:\frac{1}{2}\)
= \(130691232\times2\)
= 261382464
Chúc bạn học tốt !!!
=
Câu một \(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^3}=3^{10}.\frac{1}{3^8}=3^2=9\)
Câu hai \(=\left(2^2.2^5\right):\left(2^3.\frac{1}{2^4}\right)=\frac{2^7}{\frac{2^3}{2^4}}=2^8=256\)
Chờ chút nhá :D
a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)
\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)
\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)
b) Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(3C=2C+C=1-\frac{1}{64}< 1\)
\(C< \frac{1}{3}\)
d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e) \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
\(=\frac{10}{50}=\frac{1}{5}\)
Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)
\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)
a: \(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{13+\dfrac{13}{2}+\dfrac{13}{3}+\dfrac{13}{4}}{17-\dfrac{17}{2}+\dfrac{17}{3}-\dfrac{17}{4}}\)
\(=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\cdot\dfrac{17\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{13\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)}=\dfrac{17}{13}\)
b: \(\dfrac{0.125-\dfrac{1}{5}+\dfrac{1}{7}}{0.375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0.2}{\dfrac{3}{4}+0.5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}=\dfrac{1}{3}+\dfrac{2}{3}=1\)
(2/5+2/7-2/11):(3/7-3/11+3/5) =2/5+2/7-2/11.7/3-11/3+5/3=2/1+2/1-2/1.1/3-1/3+1/3=2+1/3=7/3 Em đây mới học lớp 6 nên hay xem kĩ lại và tính bang máy tính
a) \(\frac{790^4}{79^4}=\frac{79^4.10^4}{79^4}=10^4=10000\)
b) \(\frac{3^2}{0,375^2}=\frac{0,375^2.8^2}{0,375^2}=8^2=64\)
c) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}=3^2.3^{-5}.3^8.3^{-3}=3^2=9\)
d) \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)=2^7:\left(2^3.2^{-4}\right)=2^7:2^{-1}=2^7:\frac{1}{2}=2^8\)