K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 7 2021

Do \(AD\perp CD\Rightarrow\) hình thang ABCD vuông tại A và D

\(\Rightarrow\) Tứ giác ABHD là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow AD=BH\) \(\Rightarrow BH=CD\)

Xét hai tam giác vuông BCH và CKD có:

\(\left\{{}\begin{matrix}BH=CD\\DK=CH\end{matrix}\right.\) \(\Rightarrow\Delta BCH=\Delta CKD\left(c.g.c\right)\) (1)

\(\Rightarrow\widehat{DCK}=\widehat{HBC}\)

\(\Rightarrow\widehat{BCK}=\widehat{BCH}+\widehat{DCK}=\widehat{BCH}+\widehat{HBC}=90^0\)

\(\Rightarrow BC\perp CK\)

b. Cũng từ (1) ta suy ra \(CB=CK\)

Áp dụng hệ thức lượng trong tam giác vuông ECK với đường cao CD:

\(\dfrac{1}{CD^2}=\dfrac{1}{CE^2}+\dfrac{1}{CK^2}=\dfrac{1}{CE^2}+\dfrac{1}{CB^2}\) (đpcm)

NV
14 tháng 7 2021

undefined

Bài 3: 

Xét ΔCBD có CD=CB

nên ΔCBD cân tại C

Suy ra: \(\widehat{CDB}=\widehat{CBD}\)

mà \(\widehat{CDB}=\widehat{ADB}\)

nên \(\widehat{ADB}=\widehat{DBC}\)

mà hai góc này ở vị trí so le trong

nên AD//BC

hay ADCB là hình thang

5 tháng 7 2017

A B C D E F

A B C D E

9 tháng 9 2018

B1.

a. Có AB=BD(gt)

=>tam giác ABD cân

mà BH là đường cao (BH vuông vs AD)

=>BH là trung tuyến(đl)

=>AH=HD

b. Tương tự câu a. CM k là trung điểm AE

=>HK là đường trung bình của tam giác ADE

=>HK//BC và = 1/2 BC

c. Có chu vi tam giác ABC=AB+BC+AC

=DB+BC+CE(AB=BD,AC=CE)=14cm

mà HK=DE/2=>HK=14/2=7cm

9 tháng 9 2018

B2. theo đề bài =>ED=1/2AD

                             FC=1/2BC

                              ÈF là đường trung bình của hình thang ABCD =>EF=1/2(AB+BC)

=>DE+FC+EF=(AB+AD+DC+BC+CD)/2

=>chu vi =5.2=10cm

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Dođó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

Do đó: HK//DE

hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

10 tháng 1 2022

thanks bạn nha. nhưng mà bạn có làm đc phần d khồng?????????????????

 

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE và \(\widehat{D}=\widehat{E}\)

Xét ΔHBD vuông tại H và ΔKEC vuông tại K có 

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHBD=ΔKCE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do dó: ΔABH=ΔACK