mấy bạn dễ thw cute đáng yêu ơi giúp mình giải bài này nha
tìm giá trị nhỏ nhất của đa thức:
M=x2+y2-x+6y+10
Q=2x2-6x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
\(MinP=4\Leftrightarrow x-1=0\Rightarrow x=1\)
b) \(Q=2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\frac{9}{2}-2\left(x-\frac{3}{2}\right)^2\le\frac{-9}{2}\)
\(MinQ=\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
M=x^2+y^2-x+6y+10
M=(x^2-x+1/4)+(y^2+6y+9)+3/4
M=(x-1/2)^2+(y+3)^2+3/4
\(minM=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=1\)
\(b,Q=2x^2-6x=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
a: Ta có: \(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
a: ta có: \(P=x^2+10x+27\)
\(=x^2+10x+25+2\)
\(=\left(x+5\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-5
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
Ta có: M = x 2 + y 2 – x + 6y + 10 = ( y 2 + 6y + 9) + ( x 2 – x + 1)
= y + 3 2 + ( x 2 – 2.1/2 x + 1/4) + 3/4 = y + 3 2 + x - 1 / 2 2 + 3/4
Vì y + 3 2 ≥ 0 và x - 1 / 2 2 ≥ 0 nên y + 3 2 + x - 1 / 2 2 ≥ 0
⇒ M = y + 3 2 + x - 1 / 2 2 + 3/4 ≥ 3/4
⇒ M = 3/4 khi
Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2
Q = 2x2 - 6x
= 2 ( x2 - 3x + 9/4 ) - 9/2
= 2 ( x - 3/2)2 - 9/2
+) Ta có: 2( x - 3/2)2 \(\ge\) 0
=> 2(x - 3/2)2 - 9/2 \(\ge\) -9/2
Vậy GTNN của Q = -9/2 khi x = 3/2
^^