Cho a, b, c là số đo 3 cạnh của một tam giác. Chứng minh rằng: \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :
Đặt x= mẫu thứ nhất (1)
y=mẫu thứ hai (2)
z=mẫu thứ ba (3)
Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.
Sau đó rút c= x+y/2(@@@)
Tương tự với (2) và (3), (1) và (2)
Ta có b=x+z/2(@@)... a=y+z/2(@)
Cộng vế với vế của (@), (@@), (@@@) ta có
vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)
Đặt 1/2 ra sau đó tách các phân số ra như sau
\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)
Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại
ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu
Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)
Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
\(\ge2+2+2=6\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\) vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3
Ta có:\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\sqrt[3]{\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}}\)
Cần chứng minh:\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Ta có:\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=b^2\)
\(\Rightarrow b\ge\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\)
Nhân vế theo vế =>đpcm
"="<=>a=b=c
sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)
rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong
Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)
được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
công thức
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\)
chứng minh thế nào
Đặt: \(b+c-a=x;c+a-y=y;a+b-c=z\)
=> \(2a=y+z;2b=x+z;2c=x+y\)
T có:
\(\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\)
Áp dụng bđt cô si cho 2 số dương ta có:
\(\frac{y}{z}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)
=>\(2\left(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\right)\ge6\)
=>\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Đặt \(\begin{cases}b+c-a=x\\c+a-b=y\\a+b-c=z\end{cases}\Rightarrow\begin{cases}y+z=2a\Rightarrow a=\frac{y+z}{2}\\x+z=2b\Rightarrow b=\frac{x+z}{2}\\x+y=2c\Rightarrow c=\frac{x+y}{2}\end{cases}\)
Vì \(x;y;z>0\) vì \(a,b,c\) là các cạnh của tam giác nên \(\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)
Vế trái cho ta :
\(\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\right]\)
\(\ge\frac{1}{2}\left(2.\frac{x}{y}.\frac{y}{x}+2.\frac{z}{x}.\frac{x}{z}+2.\frac{y}{z}.\frac{z}{x}\right)\)
\(\ge\frac{1}{2}.6=3\)
Vậy \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\). ( ĐPCM )