chứng minh rằng : nếu ab +cd chia hết cho 99 thì abcd cũng chia hết cho 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : abcd= 100ab+cd chia hết cho 99
=99ab+ab+cd
=(99ab)+(ab+cd) chia hết cho 99
mà 99ab chia hêt cho 99 =>abcd chia hết cho 99 khi ab+cd chia hết cho 99 (tính chất chia hết của một tổng)
Bấm vào đây bạn nhé Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
b, ta có: abcd = ab.100+cd
= ab.99+ab+cd
=ab.99+( ab+cd)
Vì ab.99 chia hết cho 99, ab+cd chia hết cho 99
Nên abcd chia hết cho 99 nếu ab+cd chia hết cho 99
a, b, c,d là các chữ số
abcd chia hết cho 9 nên (a + b + c + d) chia hết cho 9
Mà ab + cd = (a + b + c + d)
Nên ab + cd cũng chia hết cho 9
abcd chia het cho 99
=>ab.100+cd chia het cho 99
=>ab.99+(ab+cd) chia het cho 99
Vi ab.99 chia het cho 99
Nen ab+cd chia het cho 99 (ĐPCM)
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM
Ta có : abcd
= ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Mà ab.99 chia hết cho 99 , ab + cd chia hết cho 99
Nên abcd chia hết cho 99 nếu ab + cd chia hết cho 99