Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}+2}-\frac{2}{x+4\sqrt{x}+4}\right):\left(\frac{2}{x-4}-\frac{1}{\sqrt{x}-2}\right)\)
a) Tìm x để P có nghĩa
b) Rút gọn P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhầm rồi, để làm lại
a/ \(P=\left[\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right]\)
\(=\left[\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(=\frac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}\)
\(=\frac{4x}{\sqrt{x}-3}\)
b/ \(P=-1\Rightarrow\frac{4x}{\sqrt{x}-3}=-1\Rightarrow3-\sqrt{x}=4x\Rightarrow4x+\sqrt{x}-3=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(l\right)\\\sqrt{x}=\frac{3}{4}\end{cases}\Rightarrow x=\frac{9}{16}}\)
Vậy x = 9/16
ĐKXĐ: x > 0 và \(x\ne4\)
a/ \(P=\left[\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right]\)
\(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}-4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-\sqrt{x}-2}\)
\(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{4x}{\left(2+\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)
b/ \(P=-1\Rightarrow\frac{4x}{x+3\sqrt{x}+2}=-1\Rightarrow-x-3\sqrt{x}-2=4x\)
\(\Rightarrow-5x-3\sqrt{x}-2=0\left(1\right)\), vì (1) > 0 => vô nghiệm
Vậy k có giá trị nào của x thỏa P = -1
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right).\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x+2}{\sqrt{x}+1}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x+\sqrt{x}-x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Để P âm \(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Mà \(\sqrt{x}+2>0\forall x\Rightarrow\sqrt{x}-1< 0\Rightarrow x< 1\)
Để \(P\in Z\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\in Z\)
\(\Rightarrow1-\frac{3}{\sqrt{x}+2}\in Z\Rightarrow\frac{3}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_3\)
Mà \(\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=3\Rightarrow x=1\)
Mà để \(P\in Z^-\Rightarrow\hept{\begin{cases}x< 1\\x=1\end{cases}}\)\(\Rightarrow x\in\varnothing\)
Vậy không có giá trị nào của x để P nguyên âm
ĐK : x > 2
\(\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\frac{1}{x-1}\right)\)
\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}\left(\frac{x-1-1}{x-1}\right)\)
\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}\left(\frac{x-2}{x-1}\right)\)
Với x > 2
\(=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}\left(\frac{x-2}{x-1}\right)=\frac{2\sqrt{x-1}}{x-1}\)
a)\(x-4\ne0;x\ge0\)
<=>\(x\ne4;x\ge0\)
b)\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{2}{x+4\sqrt{x}+4}\right):\left(\frac{2}{x-4}-\frac{1}{\sqrt{x}-2}\right)\)
=\(\left(\frac{1}{\sqrt{x}+2}-\frac{2}{\left(\sqrt{x}+2\right)^2}\right):\left(\frac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-2}\right)\)
=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}-\frac{2}{\left(\sqrt{x}+2\right)^2}\right):\left(\frac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
=\(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)^2}:\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)^2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
=\(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)