K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a)\(\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}=2\sqrt{\left(x+3\right)^2}\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}-2\sqrt{\left(x+3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+2}+\sqrt{x-1}-2\sqrt{x+3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x+2}+\sqrt{x-1}=2\sqrt{x+3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x+1+2\sqrt{\left(x-1\right)\left(x+2\right)}=4\left(x+3\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\2\sqrt{\left(x-1\right)\left(x+2\right)}=2x+11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\4\left(x-1\right)\left(x+2\right)=4x^2+44x+121\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\-40x=129\end{cases}}\Rightarrow x=-3\) (thỏa)

3 tháng 7 2017

b)\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)

Đk:\(x\ge-\frac{1}{3}\)

\(pt\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1=\sqrt{3x+1}\)

\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1-\left(\frac{3}{5}x+1\right)=\sqrt{3x+1}-\left(\frac{3}{5}x+1\right)\)

\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}-\frac{3}{5}x=\frac{3x+1-\left(\frac{3}{5}x+1\right)^2}{\sqrt{3x+1}+\frac{3}{5}x+1}\)

\(\Leftrightarrow\frac{3x\left(5-\sqrt{3x+10}\right)}{5\sqrt{3x+10}}=\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}\)

\(\Leftrightarrow\frac{3x\cdot\frac{25-3x-10}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)

\(\Leftrightarrow\frac{3x\cdot\frac{-3\left(x-5\right)}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)

\(\Leftrightarrow x\left(x-5\right)\left(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}\right)=0\)

Dễ thấy: \(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}< 0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v

9 tháng 12 2019

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!

16 tháng 6 2023

\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x+6\sqrt{x}-\left(x-1\right)\)

\(=3x+6\sqrt{x}-x+1\)

\(=2x+6\sqrt{x}+1\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)

\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)

\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)

\(=-x+8\sqrt{x}+1\)

\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)

\(=3x-3\sqrt{x}-2+x-1\)

\(=4x-3\sqrt{x}-3\)

\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(=x-9-\left(2x-3\sqrt{x}-2\right)\)

\(=x-9-2x+3\sqrt{x}+2\)

\(=-x+3\sqrt{x}-7\)

\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)

\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)

\(=x-4-4x-6\sqrt{x}+4\)

\(=-3-6\sqrt{x}\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok