K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a < b => 2a < a + b (1)

c < d => 2c < c + d (2)

Lấy (1) cộng (2) được:

2a + 2c < a + b + c + d

2(a + c) < a + b + c + d

=> \(\frac{a+c}{a+b+c+d}< \frac{1}{2}\) (đpcm)

30 tháng 10 2021

a) \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

b) Tham khảo:https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89+a/b+v%C3%A0+c/d+v%E1%BB%9Bi+m%E1%BA%ABu+d%C6%B0%C6%A1ng+,+trong+%C4%91%C3%B3+a/b+%3Cc/d+.+c/m+r%E1%BA%B1ng+a)+a.d+%3Cb.c+b)+a/b+%3C+(a+c)/(b+d)%3Cc/d+&id=174343

30 tháng 10 2021

a) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{c}{d}\\b,d>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\Rightarrow ad< bc\)

b) Ta có: \(ad< bc\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)(do \(b,d>0\))

\(bc>ad\Rightarrow bc+cd>ad+cd\)

\(\Rightarrow c\left(b+d\right)>d\left(a+c\right)\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
a) 

$\frac{a}{b}< \frac{c}{d}\Leftrightarrow \frac{ad}{bd}< \frac{bc}{bd}$

$\Leftrightarrow \frac{ad-bc}{bd}< 0$

Vì $bd>0$ với mọi $b,d>0$ nên $ad-bc< 0\Leftrightarrow ad< bc$

b) Từ phần a suy ra $bc-ad>0$

$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0$ do $bc-ad>0$ và $b(b+d)>0$ với mọi $b,d>0$)

$\Rightarrow \frac{a+c}{b+d}>\frac{a}{b}$

Lại có:
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$ với mọi $b,d>0$

$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$ 

Ta có đpcm.

26 tháng 3 2016

b là TBC của a+c <=> \(b=\frac{a+c}{2}\)\(\Leftrightarrow2b=a+c\)

Ta có: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)\Leftrightarrow\frac{1}{c}=\frac{b+d}{2bd}\Leftrightarrow c\left(b+d\right)=2bd\)

\(\Leftrightarrow bc+cd=2bd\)

Mà 2b=a+c

=>bc+cd=(a+c).d

=>bc+cd=ad+cd

=>bc=ad (cùng bớt đi cd)

=>a/b=c/d (đpcm)

26 tháng 3 2016

Ta có b là TBC của a và c =>2b=a+c

+) 1 :c = 1:2(1:b+2:d)=>1:c=>(d+2b):(2bd)

=>2bd=c(d+2b)

Thay 2b = a + c, ta có :

(a + c)d = c(d + a + c) => ad + cd = cd + ac +c^2

=>ad=ac+c^2=>ad=c(a+c)=>ad=cb=>a:b=c:d(đpcm)