K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

((: Cố gắng học lên lớp 10 chương Lượng giác & Đường tròn nhé :vv

NV
29 tháng 5 2020

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=2+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)

\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)

\(=2-2\left(sina.cosb-cosa.sinb\right)\)

\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)

NV
13 tháng 4 2019

\(K=\frac{2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a+b}{2}\right)+2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)}{2cos^2\left(\frac{a+b}{2}\right)-1+2cos\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)+1}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}{cos\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)}{cos\left(\frac{a+b}{2}\right)}=tan\left(\frac{a+b}{2}\right)\)

NV
13 tháng 4 2021

1.

\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)

\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)

\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)

\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)

\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)

\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)

\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)

\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)

NV
13 tháng 4 2021

2.

\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)

\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x\)

\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)

\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)

\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)

\(=tan^2a.cot^2b-2\)

1 tháng 6 2021

2.

ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)

\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)

\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))

Nếu \(y=1\), khi đó:

\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)

Phương trình này vô nghiệm

Nếu \(y=2x-1\), khi đó:

\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))

\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)

Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)

Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\)\(2x>0\)

\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)

Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)

Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)