K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)

\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)

\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)

\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)

Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T

14 tháng 8 2016

JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)

15 tháng 5 2018

ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)

\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)

\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\)

20 tháng 3 2017

2 vế bằng nhau

100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

100- 1-1/2-1/3-...-1/100 = 1/2+2/3+3/4+...+99/100

100 = 1 + 1/2 + 1/2 + 1/3 + 2/3 + ... + 1/100 + 99/100 (cùng cộng 2 vế với (- 1-1/2-1/3-...-1/100)

100 = 1 + 1 + 1 + ... + 1 (100 số hạng)

100 = 100

Vậy   100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

21 tháng 3 2017

Cảm ơn bạn!

18 tháng 2 2017

vế trước lớn hơn