K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7

2^n-11-17-7
n XX3X

Vậy n=3 thì   (2^n-1);7

18 tháng 12 2021

a, Với n = 1 ta có 3 ⋮ 3.

Giả sử n = k ≥ 1 , ta có :  k+ 2k ⋮ 3 ( GT qui nạp).

Ta đi chứng minh : n = k + 1 cũng đúng: 

(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2

                           = (k^3+2k) + 3(k^2+k+1)

Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên) 

             + 3(k^2+k+1) hiển nhiên chia hết cho 3 

Vậy mệnh đề luôn chia hết cho 3.

b, Với n = 1 ta có 12 ⋮ 6.

Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6

Ta đi chứng minh : n = k+1 cũng đúng: 

=> 13k.13 - 1 = 13(13k - 1) + 12.

Có: - 13(13k - 1) ⋮ 6 ( theo gt)

       - 12⋮6 ( hiển nhiên)

> Vậy mệnh đề luôn đúng.

 

           

 

1:

2n^2+5n-1 chia hết cho 2n-1

=>2n^2-n+6n-3+2 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2}

mà n nguyên

nên n=1 hoặc n=0

2:

a: A=n(n+1)(n+2)

Vì n;n+1;n+2 là 3 số liên tiếp

nên A=n(n+1)(n+2) chia hết cho 3!=6

b: B=(2n-1)[(2n-1)^2-1]

=(2n-1)(2n-2)*2n

=4n(n-1)(2n-1)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>B chia hết cho 8

c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24

3 tháng 7 2023

nhanh dữ, cảm ơn nhé

25 tháng 10 2017

Chứng minh n^6+n^4-2n^2 chia hết cho 72?

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Lời giải:
$7.2^{2n-2}\equiv 2.2^{2n-2}\equiv 2^{2n-1}\pmod 5$

$\Rightarrow 7.2^{2n-2}+3^{2n-1}\equiv 2^{2n-1}+3^{2n-1}\pmod 5$

Mà $2^{2n-1}+3^{3n-1}\vdots (2+3=5)$ (do $2n-1$ lẻ)

$\Rightarrow 7.2^{2n-2}+3^{2n-1}\vdots 5$ (đpcm)

16 tháng 3 2023

Lỡ có sai sót thì thông cảm giúp mình nha:3

9 tháng 5 2017

Cách 1: Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

⇔ 3 ⋮ (2n + 1) hay (2n + 1) ∈ Ư(3)

⇔ 2n + 1 ∈ {±1; ±3}

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Cách 2:

Ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

⇔ 2n + 1 ∈ Ư(3) = {±1; ± 3}.

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Chú ý: Đa thức A chia hết cho đa thức B khi phần dư của phép chia bằng 0.