K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

31 tháng 3 2017

Nếu xét các trường hợp khác thì sao alibaba ??

NV
30 tháng 7 2021

\(\Delta_1=b^2-4c\) ; \(\Delta_2=c^2-4b\)

\(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow bc=2\left(b+c\right)\)

Do đó:

\(\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm

\(\Rightarrow\) Ít nhất một trong 2 phương trình trên có nghiệm

NV
5 tháng 4 2022

Đề bài sai, ví dụ: với \(a=b=1\) thì \(x^2+x-1=0\) có 1 nghiệm thuộc \(\left(0;1\right)\) thỏa mãn yêu cầu

Nhưng \(x^2-2x+1=0\) có nghiệm kép, không phải hai nghiệm phân biệt

4 tháng 5 2017

Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Ta có    \(\Delta_1=a^2-4\)  ;   \(\Delta_2=b^2-4\)  ;   \(\Delta_3=c^2-4\)

Do đó   \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)

Vậy   \(\Delta_1+\Delta_2+\Delta_3\ge0\)  nên ít nhất phải có   \(\Delta_1\ge0\)  hoặc  \(\Delta_2\ge0\)  hoặc   \(\Delta_3\ge0\)

(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)

Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.