cho tam giác OAN vuông tại o ,OA =3cm,ON=4cm, phân giác của góc o cắt AN tai E .a,tính AE,NE?
b, từ E kẻ EH.EK lần lượt vuông góc với OA và ON.hỏi tứ giác OHEK là hình gì?tính chu vi và diện tích tứ giác OHEK(tính cạnh lây 2 chữ số thập phân,góc làm chòn đến độ)
giúp mình với
b) Xét tứ giác OHEK có
\(\widehat{KOH}=90^0\left(gt\right)\)
\(\widehat{EHO}=90^0\left(EH\perp OA\right)\)
\(\widehat{EKO}=90^0\left(EK\perp NO\right)\)
Do đó: OHEK là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật OHEK có đường chéo OE là tia phân giác của \(\widehat{KOH}\)(gt)
nên OHEK là hình vuông(Dấu hiệu nhận biết hình vuông)
a) Áp dụng định lí Pytago vào ΔOAN vuông tại O, ta được:
\(AN^2=OA^2+ON^2\)
\(\Leftrightarrow AN^2=3^2+4^2=25\)
hay AN=5(cm)
Xét ΔOAN có OE là đường phân giác ứng với cạnh AN(gt)
nên \(\dfrac{AE}{OA}=\dfrac{NE}{NO}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AE}{3}=\dfrac{NE}{4}\)
mà AE+NE=AN=5cm(E nằm giữa A và N)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{3}=\dfrac{NE}{4}=\dfrac{AE+NE}{3+4}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AE}{3}=\dfrac{5}{7}\\\dfrac{NE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=\dfrac{15}{7}cm\\NE=\dfrac{20}{7}cm\end{matrix}\right.\)
Vậy: \(AE=\dfrac{15}{7}cm;NE=\dfrac{20}{7}cm\)