cho tam giác ABC có góc A= 90o, các tia phân giác của các góc B và Ccắt nhau tại I. Góc BIC có số đo là:.......................
Các bn giải giúp mk nha!!!!!!!!!!!!!!!!!!!!!
Trình bày đầy đủ nha các bn
Ai nhanh nhất mk tk!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)
Tổng của góc ABC và góc ACB là 180o-80o = 100o
\(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
\(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)
Xét tam giác IBC :
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-50^o=130^o\)
Vậy ...
BIC = 135* :)) Trong tg ABC có gócB +gócC= 90 (t/c)
Mà IBC = 2B
ICB = 2C
Từ 3 điều trên => 2IBC + 2 ICB = 90*
( IBC + ICB) = 90*/2 = 45*
Trong tam gics IBC
BIC = 180* - ( IBC + ICB)
Thay vào : BIC = 180* - ( 45*)
BIC = 135- Oke ^^ Ahihi