K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

Gọi số thỏa đề có dạng \(a_1a_2a_3...a_9\)

Chọn a1 có 5 cách (trừ số 0)
Chọn a2 có 5 cách (trừ số a1)
Chọn a3 có 5 cách (trừ số a2)
......
Chọn a9 có 5 cách (trừ số a8)

Vậy có 5.5.5...5= 59 cách chọn số thỏa đề.

Hay nói cách khác có 59 số.

7 tháng 11 2018

Đặt y=23, xét các số  trong đó a;b;c;d;e đôi một khác nhau và thuộc tập {0;1;y;4;5}.

Khi đó có 4 cách chọn a; 4 cách chọn b; 3 cách chọn c; 2 cách chọn d và 1 cách chọn e.

Theo quy tắc nhân có 4.4.3.2=96 số

Khi ta hoán vị  trong y ta được hai số khác nhau

Nên có 96.2=192 số thỏa yêu cầu bài toán.

  Chọn A.

17 tháng 5 2016

Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.

Ta giải bằng quy tắc nhân như sau:

Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách

Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)

Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn

Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn

Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn

Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn

Theo quy tắc nhân số các số cần chọn là

                     n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192

Vậy có 192 số cần tìm.

7 tháng 1 2021

(*) Lập các số 8 chữ số có 3 chữ số 9.

Đưa các chữ số vào ô: 

 .  .  .  .  .  .  .  . 

TH1: Có số 0

Đưa 0 vào : 7 cách

Lấy 3 ô bất kì trong 7 ô còn lại để chứa 3 chữ số 9: \(C^3_7\) cách

Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách 

=> TH1 có \(7\cdot C^3_7\cdot A^4_8=411600\)

TH2: Không có số 0

Lấy 3 ô bất kì trong 8 ô còn lại để chứa 3 chữ số 9: \(C^3_8\) cách

Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách 

=> TH2 có \(C^3_8A^5_8=376320\)

=> Lập được 411600 + 376320 =787920 số 8 chữ số có 3 chữ số 9

(*) Lập các số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau : 

Đặt \(\alpha=999\)

Đưa các chữ số vào ô: 

 \(\alpha\)  .  .  .  .  . 

TH1: Có số 0

Đưa 0 vào : 5 cách

Đưa \(\alpha\) vào : 5 cách

Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách

=> TH1 : \(5\cdot5A^4_8=42000\)

TH2: Không có số 0

Đưa \(\alpha\) vào : 6 cách

Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách 

=> TH2: \(6\cdot A^5_8=40320\)

=>  Lập được 42000 + 40320 =82320 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau

Vậy lập được 787920 - 82320 = 705600 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 không đứng cạnh nhau

 

 

 

 

 

 

28 tháng 7 2015

Vì các số nguyên trong khoảng từ 20 000 đến 29 999 nên ta gọi các số đó có dạng 2abcd

+) Nếu 1 trong 4 chữ số a; b; c;d giống chữ số 2 thì ta có các trường hợp sau: 

TH1: b = 2 => 2abcd = 2a2cd :

Có 9 cách chọn chữ số a (trừ đi chữ số 2); có 8 cách chữ số c (trừ đi chữ số 2 và a); có 7 cách chọn chữ số d 

=> có 9.8 .7 = 504 số có dạng 2a2cd 

TH2: c = 2 => 2abcd = 2ab2d : tương tự như TH1 ta có 504 số

TH3: d = 2 => 2abcd = 2abc2 : ta có 504 số

+) Nếu a; b; c; d đều khác chữ số 2: Vì có 2 chữ số giống nhau và không đứng cạnh nhau nên ta có các trường hợp sau:

TH1: a = c => 2abcd = 2abad :

Có 9 cách chọn chữ số a (trừ đi chữ số 2); 8 cách chọn chữ số b; 7 cách chọn chữ số d

=> có 9.8.7 = 504 số 

TH2: a = d => 2abcd = 2abca: tương tự trên ta có 504 số

TH3: b = d => 2abcd = 2abcb: ta cũng có 504 số 

Từ các trường hợp trên ta có tất cả là: 504 x 6 = 3024 số thỏa mãn

13 tháng 8 2018

Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:

·       Chọn 2 chữ số lẻ có  cach; chọn 3 chữ số chẵn có  cách

·    Gọi số có 5 chữ số thỏa mãn đề bài là  .

·    Nếu a5 = 0 thì có 4! Cách chọn  .

·       Nếu a5 0 thì có 2 cách chọn  a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .

·       Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số

Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có  số.

Suy ra có 6000-3120=2880 số cần tìm.

Chọn D.

14 tháng 11 2017

Chọn B

Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 !  cách xếp.

Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3  cách xếp.

Vậy có  5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.

NV
13 tháng 12 2020

Chữ số hàng đơn vị có 5 cách chọn

Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại

Số số thỏa mãn: \(5.A_8^2=...\)